
Устаревшие шаблоны

Введение...2

Модель асинхронного программирования.. 2

Асинхронный шаблон на основе событий..4

BackgroundWorker... 5

1

Введение

В .NET задействованы и другие шаблоны асинхронности, которые
применялись до появления задач и асинхронных функций. Теперь
они редко востребованы, поскольку асинхронность на основе задач
стала доминирующим шаблоном.

Модель асинхронного программирования

Самый старый шаблон назывался моделью асинхронного
программирования (Asynchronous Programming Model — АРМ) и
использовал пару методов, имена которых начинаются с Begin и End,
а также интерфейс по имени IAsyncResult. В целях иллюстрации мы
возьмем класс Stream из пространства имен System.IO и рассмотрим
его метод Read. Вначале взглянем на синхронную версию:

public int Read (byte[] buffer, int offset, int size);

Вероятно, вы уже в состоянии предугадать, каким образом выглядит
асинхронная версия на основе задач:

public Task<int> ReadAsync (byte[] buffer, int offset, int size);

Теперь давайте посмотрим на версию APM:

public IAsyncResult BeginRead (byte[] buffer, int offset, int size
​ ​ ​ ​ AsyncCallback callback, object state);
public int EndRead (IAsyncResult asyncResult);

Вызов метода Begin* инициирует операцию, возвращая объект
IAsyncResult, который действует в качестве признака для
асинхронной операции. Когда операция завершается (или
отказывает), запускается делегат AsyncCallback:

public delegate void AsyncCallback (IAsyncResult ar);

Компонент, поддерживающий этот делегат, затем вызывает метод
End*, который предоставляет возвращаемое значение операции, а
также повторно генерирует исключение, если операция потерпела
неудачу.

2

Шаблон АРМ не только неудобен в применении, но также
неожиданно сложен в плане корректной реализации. Проще всего
иметь дело с методами АРМ, вызывая метод адаптера
Task.Factory.FromAsync, который преобразует пару методов АРМ в
объект Task. Внутренне он использует TaskCompletionSource, чтобы
предоставить объект задачи, которой отправляется сигнал, когда
операция АРМ завершается или отказывает.

Метод FromAsync требует передачи следующих параметров:

●​ делегат, указывающий метод BeginXXX;
●​ делегат, указывающий метод EndXXX;
●​ дополнительные аргументы, которые будут передаваться

данным методам.

Метод FromAsync перегружен для приема типов делегатов и
аргументов, которые соответствуют практически всем сигнатурам
асинхронных методов, определенным в .NET. Например, исходя из
предположения, что stream имеет тип Stream, a buffer – тип byte[] , мы
можем записать так:

Task<int> readChunk = Task<int>.Factory.FromAsync (stream.BeginRead,
 stream.EndRead, buffer, 0, 1000, null);

3

Асинхронный шаблон на основе событий

Асинхронный шаблон на основе событий (Event-Based Asynchronous
Pattern – ЕАР) появился в 2005 году с целью предоставления более
простой альтернативы шаблону АРМ, особенно в сценариях с
пользовательским интерфейсом. Тем не менее, он был реализован
лишь в небольшом количестве типов, наиболее примечательным из
которых является WebClient в пространстве имен System.Net. Следует
отметить, что ЕАР – это просто шаблон; никаких специальных типов
для его поддержки не предусмотрено. По существу шаблон выглядит
так: класс предлагает семейство членов, которые внутренне
управляют параллелизмом, примерно как в показанном далее коде.

// Это члены класса WebClient:
public byte[] DownloadData (Uri address); // Синхронная версия
public void DownloadDataAsync (Uri address);
public void DownloadDataAsync (Uri address, object userToken);
public event DownloadDataCompletedEventHandler
DownloadDataCompleted;

public void CancelAsync (object userState); // Отменяет операцию
public bool IsBusy { get; } // Указывает, выполняется ли операция

Методы *Async инициируют выполнение операции асинхронным
образом. Когда операция завершается, генерируется событие
*Completed (с автоматической отправкой захваченному контексту
синхронизации, если он имеется). Такое событие передает объект
аргументов события, содержащий перечисленные ниже элементы:

●​ флаг, который указывает, была ли операция отменена (за счет
вызова потребителем метода CancelAsync);

●​ объект Error, указывающий исключение, которое было
сгенерировано (если было);

●​ объект userToken, если он предоставлялся при вызове метода
*Async.

Типы ЕАР могут также определять событие сообщения о ходе работ,
которое инициируется всякий раз, когда состояние хода работ
изменяется (и вдобавок отправляется в контекст синхронизации):

public event DownloadProgressChangedEventHandler DownloadProgressChanged;

4

Реализация шаблона ЕАР требует написания большого объема
стереотипного кода, делая этот шаблон неудобным с композиционной
точки зрения.

BackgroundWorker

Универсальной реализацией шаблона ЕАР является класс
BackgroundWorker из пространства имен System.ComponentModel. Он
позволяет обогащенным клиентским приложениям запускать
рабочий поток и сообщать о проценте выполненной работы без
необходимости в явном захвате контекста синхронизации. Вот
пример:

var worker = new BackgroundWorker {WorkerSupportsCancellation = true };
worker.DoWork += (sender, args) =>
{ // Выполняется в рабочем потоке
 if (args.Cancel) return;
 Thread.Sleep(1000);
 args.Result = 123;
} ;
worker.RunWorkerCompleted += (sender, args) =>
{ // Выполняется в потоке пользовательского интерфейса
 // Здесь можно безопасно обновлять элементы управления
 // пользовательского интерфейса...
 if (args.Cancelled)
 Console.WriteLine ("Cancelled"); // Отменено
 else if (args.Error != null)
 Console.WriteLine ("Error: " + args.Error.Message); // Ошибка
 else
 Console.WriteLine ("Result is: " + args.Result); // Результат
};
worker.RunWorkerAsync(); // Захватывает контекст синхронизации
 // и запускает операцию

Метод RunWorkerAsync запускает операцию, инициируя событие
DoWork в рабочем потоке из пула. Он также захватывает контекст
синхронизации, и когда операция завершается (или отказывает),
через данный контекст генерируется событие RunWorkerCompleted
(подобно признаку продолжения).

Класс BackgroundWorker порождает крупномодульный параллелизм,
при котором событие DoWork инициируется полностью в рабочем
потоке. Если в этом обработчике событий нужно обновлять элементы
управления пользовательского интерфейса (помимо отправки
сообщения о проценте выполненных работ), тогда придется
использовать Dispatcher.BeginInvoke или похожий метод.

5

	Введение
	Модель асинхронного программирования
	Асинхронный шаблон на основе событий
	BackgroundWorker

