
Laboratory work №1.
Multithreaded processing of array elements

Tasks

1. Implement sequential processing of array elements, for example, multiplying array
elements by a number. The number of array elements given as parameter N.

2. Implement multithreaded processing of array elements, using array splitting into an
equal amount of parts. The number of threads given as parameter M.

3. Complete analysis of the effectiveness of multithreaded computing using different
parameter values N (10, 100, 1000, 100000) and M (2, 3, 4, 5, 10). Give results in tabular
form.

4. Complete effectiveness analysis with complicating the processing of each array element.

5. Explore efficiency of range separation with an uneven computational complexity of
processing array elements.

6. Explore efficiency of parallelism with circular separation of elements. Compare it with
partition by range efficiency.

Methodical guidelines

In this work explores parallelization effectiveness of independent processing of vector
elements. In the first task, as processing method might be chosen one of mathematical
transformation of vector elements method:

for(int i = 0; i < a.Length; i++)
b[i] = Math.Pow(a[i], 1.789);

Multithread processing possible in C# with Thread objects. On a multi-core system,
multithreading leads to parallelism. Classes for working with threads placed in
System.Threading namespace.

To create a thread need to specify the name of the workflow method, which could be
declared in: another class, a class with an entry point as a static method, or as a lambda-
expression. The thread method is either not takes any arguments or takes an argument as
object type. A thread is started by calling Start() method.

class Program

{
static void Run(object some_data)
{

int m = (int) some_data;
..

}
static void Main()
{

..
Thread thr = new Thread(Run);
thr.Start(some_data);

}
}

You can wait until the threads are finished using Join method :

thr1.Join(); thr2.Join();

In the thread method, it is essential to provide the possibility of partition the range
0…(N-1) into the number of threads. On thread startup as an argument is passed either
«thread index» which determines array range computing in that thread, or starting and ending
array index.

Multithreaded computation will be parallel if the system uses several processors
(processor cores). The number of processors can be found using the property:

System.Environment.ProcessorCount

Besides, parallel computing may be implemented with the TPL (Task Parallel
Library). Library classes placed in System.Threading.Tasks namespace. Parallel
operations computing over loop elements executed with Parallel.For method:

Parallel.For(0, a.Length, i =>
{ b[i] = Math.Pow(a[i], 1.789); });

For performance analysis of coherent and parallel computation could be used variables

with DateTime type. For example,

DateTime dt1, dt2;
dt1 = DateTime.Now;
// Computation_method_call;
dt2 = DateTime.Now;
TimeSpan ts = dt2 – dt1;
Console.WriteLine("Total time: {0}", ts.TotalMilliseconds);

You can also use the object Stopwatch of System.Diagnostics: namespace

Stopwatch sw = new Stopwatch();
sw.Start();
// Computation_method_call;
sw.Stop();
TimeSpan ts = sw.Elapsed;
Console.WriteLine("Total time: {0}", ts.TotalMilliseconds);

When do evaluate performance, it’s necessary to take into account that the execution

time of the algorithm depends on many parameters. Therefore it is desirable to assess average
turnaround time with multiple algorithm runs, excluding the first “warm-up” run.

Parallel algorithm efficiency depends heavily on the array elements, number of threads,
math function complexity, etc. It should be taken into account that with a small volume of array
elements, the overhead associated with organizing multithreaded processing exceeds the gain
from parallel processing. With sequentially executing primitive loop processing, performance is
achieved by optimal use of the cache memory.

When analyzing the dependence of speed on the number of threads, the number of
processor cores should be taken into account. An increase in the number of threads beyond the
capabilities of a computing system leads to thread competition and poor performance.

The complication of processing array elements is proposed to be implemented using the
internal loop. For example,

for(int i = 0; i < a.Length; i++)
{

// i-element processing
for(int j = 0; j < K; j++)

b[i] += Math.Pow(a[i], 1.789);
}

K is a difficult parameter. Increasing that parameter, we observe an increase in the efficiency of
parallel processing with a smaller array of numbers.

At each iteration, in the considered processing methods computational load relatively
flat. In cases where the computational load depends on element index, array partitioning into
equal ranges may not be efficient. Consider the following processing option:

for(int i=0; i<a.Length; i++)
{

// I-element processing
for(int j=0; j < i; j++)

b[i] += Math.Pow(a[i], 1.789);
}

The computational burden when processing an i-element depends on the i index.
Processing the initial elements of an array takes less time indifference with last elements
processing. Separation of data by range leads to unbalanced loading of threads and decreases
the efficiency of parallelization.

One possible approach to equalization of thread loading is the circular decomposition
method. In the case of two threads, we receive a scheme where the first thread handle all even
elements and the second thread handles all uneven. Implement circle decomposition for N
threads (N > 2).

	Laboratory work.
	Multithreaded processing of array elements
	Methodical guidelines

