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Preface

I think the animal on this cover, a common palm civet, is applicable to the subject of
this book. I knew nothing about this animal until I saw the cover, so I looked it up.
Common palm civets are considered pests because they defecate all over ceilings and
attics and make loud noises fighting with each other at the most inopportune times.
Their anal scent glands emit a nauseating secretion. They have an endangered species
rating of “Least Concern,” which is apparently the politically correct way of saying, “Kill
as many of these as you want; no one will miss them.” Common palm civets enjoy eating
coffee cherries, and they pass the coffee beans through. Kopi luwak, one of the most
expensive coffees in the world, is made from the coffee beans extracted from civet ex‐
cretions. According to the Specialty Coffee Association of America, “It just tastes bad.”

This makes the common palm civet a perfect mascot for concurrent and multithreaded
developement. To the uninitiated, concurrency and multithreading are undesirable.
They make well-behaved code act up in the most horrendous ways. Race conditions
and whatnot cause loud crashes (always, it seems, either in production or a demo). Some
have gone so far as to declare “threads are evil” and avoid concurrency completely. There
are a handful of developers who have developed a taste for concurrency and use it
without fear; but most developers have been burned in the past by concurrency, and
that experience has left a bad taste in their mouth.

However, for modern applications, concurrency is quickly becoming a requirement.
Users these days expect fully responsive interfaces, and server applications are having
to scale to unprecedented levels. Concurrency addresses both of these trends.

Fortunately, there are many modern libraries that make concurrency much easier! Par‐
allel processing and asynchronous programming are no longer exclusively the domains
of wizards. By raising the level of abstraction, these libraries make responsive and scal‐
able application development a realistic goal for every developer. If you have been
burned in the past when concurrency was extremely difficult, then I encourage you to
give it another try with modern tools. We can probably never call concurrency easy, but
it sure isn’t as hard as it used to be!
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Who Should Read This Book
This book is written for developers who want to learn modern approaches to concur‐
rency. I do assume that you’ve got a fair amount of .NET experience, including an
understanding of generic collections, enumerables, and LINQ. I do not expect that you
have any multithreading or asynchronous programming knowledge. If you do have
some experience in those areas, you may still find this book helpful because it introduces
newer libraries that are safer and easier to use.

Concurrency is useful for any kind of application. It doesn’t matter whether you work
on desktop, mobile, or server applications; these days concurrency is practically a re‐
quirement across the board. You can use the recipes in this book to make user interfaces
more responsive and servers more scalable. We are already at the point where concur‐
rency is ubiquitous, and understanding these techniques and their uses is essential
knowledge for the professional developer.

Why I Wrote This Book
Early in my career, I learned multithreading the hard way. After a couple of years, I
learned asynchronous programming the hard way. While those were both valuable ex‐
periences, I do wish that back then I had some of the tools and resources that are available
today. In particular, the async and await support in modern .NET languages is pure
gold.

However, if you look around today at books and other resources for learning concur‐
rency, they almost all start by introducing the most low-level concepts. There’s excellent
coverage of threads and serialization primitives, and the higher-level techniques are put
off until later, if they’re covered at all. I believe this is for two reasons. First, many
developers of concurrency such as myself did learn the low-level concepts first, slogging
through the old-school techniques. Second, many books are years old and cover now-
outdated techniques; as the newer techniques have become available, these books have
been updated to include them, but unfortunately placed them at the end.

I think that’s backward. In fact, this book only covers modern approaches to concur‐
rency. That’s not to say there’s no value in understanding all the low-level concepts.
When I went to college for programming, I had one class where I had to build a virtual
CPU from a handful of gates, and another class that covered assembly programming.
In my professional career, I’ve never designed a CPU, and I’ve only written a couple
dozen lines of assembly, but my understanding of the fundamentals still helps me every
day. However, it’s best to start with the higher-level abstractions; my first programming
class was not in assembly language.

This book fills a niche: it is an introduction to (and reference for) concurrency using
modern approaches. It covers several different kinds of concurreny, including parallel,
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asynchronous, and reactive programming. However, it does not cover any of the old-
school techniques, which are adequately covered in many other books and online re‐
sources.

Navigating This Book
This book is intended as both an introduction and as a quick reference for common
solutions. The book is broken down as follows:

• Chapter 1 is an introduction to the various kinds of concurrency covered by this
book: parallel, asynchronous, reactive, and dataflow.

• Chapters 2-5 are a more thorough introduction to these kinds of concurrency.
• The remaining chapters each deal with a particular aspect of concurrency, and act

as a reference for solutions to common problems.

I recommend reading (or at least skimming) the first chapter, even if you’re already
familiar with some kinds of concurrency.

Online Resources
This book acts like a broad-spectrum introduction to several different kinds of con‐
currency. I’ve done my best to include techniques that I and others have found the most
helpful, but this book is not exhaustive by any means. The following resources are the
best ones I’ve found for a more thorough exploration of these technologies.

For parallel programming, the best resource I know of is Parallel Programming with
Microsoft .NET by Microsoft Press, which is available online. Unfortunately, it is already
a bit out of date. The section on Futures should use asynchronous code instead, and the
section on Pipelines should use TPL Dataflow.

For asynchronous programming, MSDN is quite good, particularly the “Task-based
Asynchronous Pattern” document.

Microsoft has also published an “Introduction to TPL Dataflow,” which is the best de‐
scription of TPL Dataflow.

Reactive Extensions (Rx) is a library that is gaining a lot of traction online and continues
evolving. In my opinion, the best resource today for Rx is an ebook by Lee Campbell
called Introduction to Rx.
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Conventions Used in This Book
The following typographical conventions are used in this book:
Italic

Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip, suggestion, or general note.

This element indicates a warning or caution.

Safari® Books Online
Safari Books Online is an on-demand digital library that
delivers expert content in both book and video form from
the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research, prob‐
lem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi‐
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Pro‐
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fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol‐
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/concur-c-ckbk.

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia
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CHAPTER 1

Concurrency: An Overview

Concurrency is a key aspect of beautiful software. For decades, concurrency was possible
but difficult. Concurrent software was difficult to write, difficult to debug, and difficult
to maintain. As a result, many developers chose the easier path and avoided concurrency.
However, with the libraries and language features available for modern .NET programs,
concurrency is much easier. When Visual Studio 2012 was released, Microsoft signifi‐
cantly lowered the bar for concurrency. Previously, concurrent programming was the
domain of experts; these days, every developer can (and should) embrace concurrency.

1.1. Introduction to Concurrency
Before continuing, I’d like to clear up some terminology that I’ll be using throughout
this book. Let’s start with concurrency.
Concurrency

Doing more than one thing at a time.

I hope it’s obvious how concurrency is helpful. End-user applications use concurrency
to respond to user input while writing to a database. Server applications use concurrency
to respond to a second request while finishing the first request. You need concurrency
any time you need an application to do one thing while it’s working on something else.
Almost every software application in the world can benefit from concurrency.

At the time of this writing (2014), most developers hearing the term “concurrency”
immediately think of “multithreading.” I’d like to draw a distinction between these two.
Multithreading

A form of concurrency that uses multiple threads of execution.

Multithreading literally refers to using multiple threads. As we’ll see in many recipes in
this book, multithreading is one form of concurrency, but certainly not the only one. In
fact, direct use of the low-level threading types has almost no purpose in a modern
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application; higher-level abstractions are more powerful and more efficient than old-
school multithreading. As a consequence, I’ll minimize my coverage of outdated tech‐
niques in this book. None of the multithreading recipes in this book use the Thread or
BackgroundWorker types; they have been replaced with superior alternatives.

As soon as you type new Thread(), it’s over; your project already has
legacy code.

But don’t get the idea that multithreading is dead! Multithreading lives on in the thread
pool, a useful place to queue work that automatically adjusts itself according to de‐
mand. In turn, the thread pool enables another important form of concurrency: parallel
processing.
Parallel Processing

Doing lots of work by dividing it up among multiple threads that run concurrently.

Parallel processing (or parallel programming) uses multithreading to maximize the use
of multiple processors. Modern CPUs have multiple cores, and if there’s a lot of work
to do, then it makes no sense to just make one core do all the work while the others sit
idle. Parallel processing will split up the work among multiple threads, which can each
run independently on a different core.

Parallel processing is one type of multithreading, and multithreading is one type of
concurrency. There’s another type of concurrency that is important in modern appli‐
cations but is not (currently) familiar to many developers: asynchronous programming.
Asynchronous Programming

A form of concurrency that uses futures or callbacks to avoid unnecessary threads.

A future (or promise) is a type that represents some operation that will complete in the
future. The modern future types in .NET are Task and Task<TResult>. Older asyn‐
chronous APIs use callbacks or events instead of futures. Asynchronous programming
is centered around the idea of an asynchronous operation: some operation that is started
that will complete some time later. While the operation is in progress, it does not block
the original thread; the thread that starts the operation is free to do other work. When
the operation completes, it notifies its future or invokes its completion callback event
to let the application know the operation is finished.

Asynchronous programming is a powerful form of concurrency, but until recently, it
required extremely complex code. The async and await support in VS2012 make asyn‐
chronous programming almost as easy as synchronous (nonconcurrent) programming.
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Another form of concurrency is reactive programming. Asynchronous programming
implies that the application will start an operation that will complete once at a later time.
Reactive programming is closely related to asynchronous programming, but is built on
asynchronous events instead of asynchronous operations. Asynchronous events may not
have an actual “start,” may happen at any time, and may be raised multiple times. One
example is user input.
Reactive Programming

A declarative style of programming where the application reacts to events.

If you consider an application to be a massive state machine, the application’s behavior
can be described as reacting to a series of events by updating its state at each event. This
is not as abstract or theoretical as it sounds; modern frameworks make this approach
quite useful in real-world applications. Reactive programming is not necessarily con‐
current, but it is closely related to concurrency, so we’ll be covering the basics in this
book.

Usually, a mixture of techniques are used in a concurrent program. Most applications
at least use multithreading (via the thread pool) and asynchronous programming. Feel
free to mix and match all the various forms of concurrency, using the appropriate tool
for each part of the application.

1.2. Introduction to Asynchronous Programming
Asynchronous programming has two primary benefits. The first benefit is for end-user
GUI programs: asynchronous programming enables responsiveness. We’ve all used a
program that temporarily locks up while it’s working; an asynchronous program can
remain responsive to user input while it’s working. The second benefit is for server-side
programs: asynchronous programming enables scalability. A server application can
scale somewhat just by using the thread pool, but an asynchronous server application
can usually scale an order of magnitude better than that.

Modern asynchronous .NET applications use two keywords: async and await. The
async keyword is added to a method declaration, and its primary purpose is to enable
the await keyword within that method (the keywords were introduced as a pair for
backward-compatibility reasons). An async method should return Task<T> if it returns
a value, or Task if it does not return a value. These task types represent futures; they
notify the calling code when the async method completes.

Avoid async void! It is possible to have an async method return
void, but you should only do this if you’re writing an async event
handler. A regular async method without a return value should
return Task, not void.
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With that background, let’s take a quick look at an example:

async Task DoSomethingAsync()
{
  int val = 13;

  // Asynchronously wait 1 second.
  await Task.Delay(TimeSpan.FromSeconds(1));

  val *= 2;

  // Asynchronously wait 1 second.
  await Task.Delay(TimeSpan.FromSeconds(1));

  Trace.WriteLine(val);
}

An async method begins executing synchronously, just like any other method. Within
an async method, the await keyword performs an asynchronous wait on its argument.
First, it checks whether the operation is already complete; if it is, it continues executing
(synchronously). Otherwise, it will pause the async method and return an incomplete
task. When that operation completes some time later, the async method will resume
executing.

You can think of an async method as having several synchronous portions, broken up
by await statements. The first synchronous portion executes on whetever thread calls
the method, but where do the other synchronous portions execute? The answer is a bit
complicated.

When you await a task (the most common scenario), a context is captured when the
await decides to pause the method. This context is the current SynchronizationCon
text unless it is null, in which case the context is the current TaskScheduler. The
method resumes executing within that captured context. Usually, this context is the UI
context (if you’re on the UI thread), an ASP.NET request context (if you’re processing
an ASP.NET request), or the thread pool context (most other situations).

So, in the preceding code, all the synchronous portions will attempt to resume on the
original context. If you call DoSomethingAsync from a UI thread, each of its synchronous
portions will run on that UI thread; but if you call it from a thread-pool thread, each of
its synchronous portions will run on a thread-pool thread.

You can avoid this default behavior by awaiting the result of the ConfigureAwait ex‐
tension method and passing false for the continueOnCapturedContext parameter.
The following code will start on the calling thread, and after it is paused by an await, it
will resume on a thread-pool thread:

async Task DoSomethingAsync()
{
  int val = 13;
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  // Asynchronously wait 1 second.
  await Task.Delay(TimeSpan.FromSeconds(1)).ConfigureAwait(false);

  val *= 2;

  // Asynchronously wait 1 second.
  await Task.Delay(TimeSpan.FromSeconds(1)).ConfigureAwait(false);

  Trace.WriteLine(val.ToString());
}

It’s good practice to always call ConfigureAwait in your core “li‐
brary” methods, and only resume the context when you need it—in
your outer “user interface” methods.

The await keyword is not limited to working with tasks; it can work with any kind of
awaitable that follows a certain pattern. As one example, the Windows Runtime API
defines its own interfaces for asynchronous operations. These are not convertible to
Task, but they do follow the awaitable pattern, so you can directly await them. These
awaitables are more common in Windows Store applications, but most of the time await
will take a Task or Task<T>.

There are two basic ways to create a Task instance. Some tasks represent actual code
that a CPU has to execute; these computational tasks should be created by calling
Task.Run (or TaskFactory.StartNew if you need them to run on a particular scheduler).
Other tasks represent a notification; these event-based tasks are created by TaskComple
tionSource<T> (or one of its shortcuts). Most I/O tasks use TaskCompletionSource<T>.

Error handling is natural with async and await. In the following code snippet, Possi
bleExceptionAsync may throw a NotSupportedException, but TrySomethingAsync
can catch the exception naturally. The caught exception has its stack trace properly
preserved and is not artificailly wrapped in a TargetInvocationException or Aggre
gateException:

async Task TrySomethingAsync()
{
  try
  {
    await PossibleExceptionAsync();
  }
  catch (NotSupportedException ex)
  {
    LogException(ex);
    throw;
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  }
}

When an async method throws (or propagates) an exception, the exception is placed
on its returned Task and the Task is completed. When that Task is awaited, the await
operator will retrieve that exception and (re)throw it in a way such that its original stack
trace is preserved. Thus, code like this would work as expected if PossibleExceptio
nAsync was an async method:

async Task TrySomethingAsync()
{
  // The exception will end up on the Task, not thrown directly.
  Task task = PossibleExceptionAsync();

  try
  {
    // The Task's exception will be raised here, at the await.
    await task;
  }
  catch (NotSupportedException ex)
  {
    LogException(ex);
    throw;
  }
}

There’s one other important guideline when it comes to async methods: once you start
using async, it’s best to allow it to grow through your code. If you call an async method,
you should (eventually) await the task it returns. Resist the temptation of calling
Task.Wait or Task<T>.Result; this could cause a deadlock. Consider this method:

async Task WaitAsync()
{
  // This await will capture the current context ...
  await Task.Delay(TimeSpan.FromSeconds(1));
  // ... and will attempt to resume the method here in that context.
}

void Deadlock()
{
  // Start the delay.
  Task task = WaitAsync();

  // Synchronously block, waiting for the async method to complete.
  task.Wait();
}

This code will deadlock if called from a UI or ASP.NET context. This is because both of
those contexts only allow one thread in at a time. Deadlock will call WaitAsync, which
begins the delay. Deadlock then (synchronously) waits for that method to complete,
blocking the context thread. When the delay completes, await attempts to resume

6 | Chapter 1: Concurrency: An Overview



WaitAsync within the captured context, but it cannot because there is already a thread
blocked in the context, and the context only allows one thread at a time. Deadlock can
be prevented two ways: you can use ConfigureAwait(false) within WaitAsync (which
causes await to ignore its context), or you can await the call to WaitAsync (making
Deadlock into an async method).

If you use async, it’s best to use async all the way.

If you would like a more complete introduction to async, Async in C# 5.0 by Alex Davies
(O’Reilly) is an excellent resource. Also, the online documentation that Microsoft has
provided for async is better than usual; I recommend reading at least the the async
overview and the Task-based Asynchronous Pattern (TAP) overview. If you really want
to go deep, there’s an official FAQ and blog that have tremendous amounts of informa‐
tion.

1.3. Introduction to Parallel Programming
Parallel programming should be used any time you have a fair amount of computation
work that can be split up into independent chunks of work. Parallel programming in‐
creases the CPU usage temporarily to improve throughput; this is desirable on client
systems where CPUs are often idle but is usually not appropriate for server systems.
Most servers have some parallelism built in; for example, ASP.NET will handle multiple
requests in parallel. Writing parallel code on the server may still be useful in some
situations (if you know that the number of concurrent users will always be low), but in
general, parallel programming on the server would work against the built-in parallelism
and would not provide any real benefit.

There are two forms of parallelism: data parallelism and task parallelism. Data paral‐
lelism is when you have a bunch of data items to process, and the processing of each
piece of data is mostly independent from the other pieces. Task parallelism is when you
have a pool of work to do, and each piece of work is mostly independent from the other
pieces. Task parallelism may be dynamic; if one piece of work results in several additional
pieces of work, they can be added to the pool of work.

There are a few different ways to do data parallelism. Parallel.ForEach is similar to a
foreach loop and should be used when possible. Parallel.ForEach is covered in
Recipe 3.1. The Parallel class also supports Parallel.For, which is similar to a for
loop and can be used if the data processing depends on the index. Code using Paral
lel.ForEach looks like this:
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void RotateMatrices(IEnumerable<Matrix> matrices, float degrees)
{
    Parallel.ForEach(matrices, matrix => matrix.Rotate(degrees));
}

Another option is PLINQ (Parallel LINQ), which provides an AsParallel extension
method for LINQ queries. Parallel is more resource friendly than PLINQ; Parallel
will play more nicely with other processes in the system, while PLINQ will (by default)
attempt to spread itself over all CPUs. The downside to Parallel is that it is more
explicit; PLINQ has more elegant code in many cases. PLINQ is covered in Recipe 3.5:

IEnumerable<bool> PrimalityTest(IEnumerable<int> values)
{
    return values.AsParallel().Select(val => IsPrime(val));
}

Regardless of the method you choose, one guideline stands out when doing parallel
processing.

The chunks of work should be as independent from each other as
possible.

As long as your chunk of work is independent from all other chunks, you maximize
your parallelism. As soon as you start sharing state between multiple threads, you have
to synchronize access to that shared state, and your application becomes less parallel.
We’ll cover synchronization in more detail in Chapter 11.

The output of your parallel processing can be handled various ways. You can place the
results in some kind of a concurrent collection, or you can aggregate the results into a
summary. Aggregation is common in parallel processing; this kind of map/reduce
functionality is also supported by the Parallel class method overloads. We’ll look at
aggregation in more detail in Recipe 3.2.

Now let’s turn to task parallelism. Data parallelism is focused on processing data; task
parallelism is just about doing work.

One Parallel method that does a type of fork/join task parallelism is Parallel.In
voke. This is covered in Recipe 3.3; you just pass in the delegates you want to execute
in parallel:

void ProcessArray(double[] array)
{
    Parallel.Invoke(
        () => ProcessPartialArray(array, 0, array.Length / 2),
        () => ProcessPartialArray(array, array.Length / 2, array.Length)
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    );
}

void ProcessPartialArray(double[] array, int begin, int end)
{
    // CPU-intensive processing...
}

The Task type was originally introduced for task parallelism, though these days it’s also
used for asynchronous programming. A Task instance—as used in task parallelism—
represents some work. You can use the Wait method to wait for a task to complete, and
you can use the Result and Exception properties to retrieve the results of that work.
Code using Task directly is more complex than code using Parallel, but it can be useful
if you don’t know the structure of the parallelism until runtime. With this kind of dy‐
namic parallelism, you don’t know how many pieces of work you need to do at the
beginning of the processing; you find it out as you go along. Generally, a dynamic piece
of work should start whatever child tasks it needs and then wait for them to complete.
The Task type has a special flag, TaskCreationOptions.AttachedToParent, which you
could use for this. Dynamic parallelism is covered in Recipe 3.4.

Task parallelism should strive to be independent, just like data parallelism. The more
independent your delegates can be, the more efficient your program can be. With task
parallelism, be especially careful of variables captured in closures. Remember that clo‐
sures capture references (not values), so you can end up with sharing that isn’t obvious.

Error handling is similar for all kinds of parallelism. Since operations are proceeding
in parallel, it is possible for multiple exceptions to occur, so they are wrapped up in an
AggregateException, which is thrown to your code. This behavior is consistent across
Parallel.ForEach, Parallel.Invoke, Task.Wait, etc. The AggregateException type
has some useful Flatten and Handle methods to simplify the error handling code:

try
{
    Parallel.Invoke(() => { throw new Exception(); },
        () => { throw new Exception(); });
}
catch (AggregateException ex)
{
    ex.Handle(exception =>
    {
        Trace.WriteLine(exception);
        return true; // "handled"
    });
}

Usually, you don’t have to worry about how the work is handled by the thread pool. Data
and task parallelism use dynamically adjusting partitioners to divide work among
worker threads. The thread pool increases its thread count as necessary. Thread-pool
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threads use work-stealing queues. Microsoft put a lot of work into making each part as
efficient as possible, and there are a large number of knobs you can tweak if you need
maximum performance. As long as your tasks are not extremely short, they should work
well with the default settings.

Tasks should not be extremely short, nor extremely long.

If your tasks are too short, then the overhead of breaking up the data into tasks and
scheduling those tasks on the thread pool becomes significant. If your tasks are too long,
then the thread pool cannot dynamically adjust its work balancing efficiently. It’s diffi‐
cult to determine how short is too short and how long is too long; it really depends on
the problem being solved and the approximate capabilities of the hardware. As a general
rule, I try to make my tasks as short as possible without running into performance issues
(you’ll see your performance suddenly degrade when your tasks are too short). Even
better, instead of using tasks directly, use the Parallel type or PLINQ. These higher-
level forms of parallelism have partitioning built in to handle this automatically for you
(and adjust as necessary at runtime).

If you want to dive deeper into parallel programming, the best book on the subject is
Parallel Programming with Microsoft .NET, by Colin Campbell et al. (MSPress).

1.4. Introduction to Reactive Programming (Rx)
Reactive programming has a higher learning curve than other forms of concurrency,
and the code can be harder to maintain unless you keep up with your reactive skills. If
you’re willing to learn it, though, reactive programming is extremely powerful. Reactive
programming allows you to treat a stream of events like a stream of data. As a rule of
thumb, if you use any of the event arguments passed to an event, then your code would
benefit from using Rx instead of a regular event handler.

Reactive programming is based around the notion of observable streams. When you
subscribe to an observable stream, you’ll receive any number of data items (OnNext) and
then the stream may end with a single error (OnError) or “end of stream” notification
(OnCompleted). Some observable streams never end. The actual interfaces look like this:

interface IObserver<in T>
{
  void OnNext(T item);
  void OnCompleted();
  void OnError(Exception error);
}
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interface IObservable<out T>
{
  IDisposable Subscribe(IObserver<T> observer);
}

However, you should never implement these interfaces. The Reactive Extensions (Rx)
library by Microsoft has all the implementations you should ever need. Reactive code
ends up looking very much like LINQ; you can think of it as “LINQ to events.” The
following code starts with some unfamiliar operators (Interval and Timestamp) and
ends with a Subscribe, but in the middle are some operators that should be familiar
from LINQ: Where and Select. Rx has everything that LINQ does and adds in a large
number of its own operators, particularly ones that deal with time:

Observable.Interval(TimeSpan.FromSeconds(1))
    .Timestamp()
    .Where(x => x.Value % 2 == 0)
    .Select(x => x.Timestamp)
    .Subscribe(x => Trace.WriteLine(x));

The example code starts with a counter running off a periodic timer (Interval) and
adds a timestamp to each event (Timestamp). It then filters the events to only include
even counter values (Where), selects the timestamp values (Timestamp), and then as each
resulting timestamp value arrives, writes it to the debugger (Subscribe). Don’t worry
if you don’t understand the new operators, such as Interval: we’ll cover those later. For
now, just keep in mind that this is a LINQ query very similar to the ones with which
you are already familiar. The main difference is that LINQ to Objects and LINQ to
Entities use a “pull” model, where the enumeration of a LINQ query pulls the data
through the query, while LINQ to events (Rx) uses a “push” model, where the events
arrive and travel through the query by themselves.

The definition of an observable stream is independent from its subscriptions. The last
example is the same as this one:

IObservable<DateTimeOffset> timestamps =
    Observable.Interval(TimeSpan.FromSeconds(1))
    .Timestamp()
    .Where(x => x.Value % 2 == 0)
    .Select(x => x.Timestamp);
timestamps.Subscribe(x => Trace.WriteLine(x));

It is normal for a type to define the observable streams and make them available as an
IObservable<T> resource. Other types can then subscribe to those streams or combine
them with other operators to create another observable stream.

An Rx subscription is also a resource. The Subscribe operators return an IDisposa
ble that represents the subscription. When you are done responding to that observable
stream, dispose of the subscription.
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Subscriptions behave differently with hot and cold observables. A hot observable is a
stream of events that is always going on, and if there are no subscribers when the events
come in, they are lost. For example, mouse movement is a hot observable. A cold ob‐
servable is an observable that doesn’t have incoming events all the time. A cold observ‐
able will react to a subscription by starting the sequence of events. For example, an
HTTP download is a cold observable; the subscription causes the HTTP request to be
sent.

The Subscribe operator should always take an error handling parameter as well. The
preceding examples do not; the following is a better example that will respond appro‐
priately if the observable stream ends in an error:

Observable.Interval(TimeSpan.FromSeconds(1))
    .Timestamp()
    .Where(x => x.Value % 2 == 0)
    .Select(x => x.Timestamp)
    .Subscribe(x => Trace.WriteLine(x),
        ex => Trace.WriteLine(ex));

One type that is useful when experimenting with Rx is Subject<T>. This “subject” is
like a manual implementation of an observable stream. Your code can call OnNext,
OnError, and OnCompleted, and the subject will forward those calls to its subscribers.
Subject<T> is great for experimenting, but in production code, you should use opera‐
tors like those covered in Chapter 5.

There are tons of useful Rx operators, and I only cover a few selected ones in this book.
For more information on Rx, I recommend the excellent online book Introduction to Rx.

1.5. Introduction to Dataflows
TPL Dataflow is an interesting mix of asynchronous and parallel technologies. It is useful
when you have a sequence of processes that need to be applied to your data. For example,
you may need to download data from a URL, parse it, and then process it in parallel
with other data. TPL Dataflow is commonly used as a simple pipeline, where data enters
one end and travels until it comes out the other. However, TPL Dataflow is far more
powerful than this; it is capable of handling any kind of mesh. You can define forks,
joins, and loops in a mesh, and TPL Dataflow will handle them appropriately. Most of
the time, though, TPL Dataflow meshes are used as a pipeline.

The basic building unit of a dataflow mesh is a dataflow block. A block can either be a
target block (receiving data), a source block (producing data), or both. Source blocks
can be linked to target blocks to create the mesh; linking is covered in Recipe 4.1. Blocks
are semi-independent; they will attempt to process data as it arrives and push the results
downstream. The usual way of using TPL Dataflow is to create all the blocks, link them
together, and then start putting data in one end. The data then comes out of the other
end by itself. Again, Dataflow is more powerful than this; it is possible to break links
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and create new blocks and add them to the mesh while there is data flowing through it,
but this is a very advanced scenario.

Target blocks have buffers for the data they receive. This allows them to accept new data
items even if they are not ready to process them yet, keeping data flowing through the
mesh. This buffering can cause problems in fork scenarios, where one source block is
linked to two target blocks. When the source block has data to send downstream, it
starts offering it to its linked blocks one at a time. By default, the first target block would
just take the data and buffer it, and the second target block would never get any. The fix
for this situation is to limit the target block buffers by making them nongreedy; we cover
this in Recipe 4.4.

A block will fault when something goes wrong, for example, if the processing delegate
throws an exception when processing a data item. When a block faults, it will stop
receiving data. By default, it will not take down the whole mesh; this gives you the
capability to rebuild that part of the mesh or redirect the data. However, this is an
advanced scenario; most times, you want the faults to propagate along the links to the
target blocks. Dataflow supports this option as well; the only tricky part is that when an
exception is propagated along a link, it is wrapped in an AggregateException. So, if
you have a long pipeline, you could end up with a deeply nested exception; the Aggre
gateException.Flatten method can be used to work around this:

try
{
    var multiplyBlock = new TransformBlock<int, int>(item =>
    {
        if (item == 1)
            throw new InvalidOperationException("Blech.");
        return item * 2;
    });
    var subtractBlock = new TransformBlock<int, int>(item => item - 2);
    multiplyBlock.LinkTo(subtractBlock,
        new DataflowLinkOptions { PropagateCompletion = true });

    multiplyBlock.Post(1);
    subtractBlock.Completion.Wait();
}
catch (AggregateException exception)
{
    AggregateException ex = exception.Flatten();
    Trace.WriteLine(ex.InnerException);
}

Dataflow error handling is covered in more detail in Recipe 4.2.

At first glance, dataflow meshes sound very much like observable streams, and they do
have much in common. Both meshes and streams have the concept of data items passing
through them. Also, both meshes and streams have the notion of a normal completion
(a notification that no more data is coming), as well as a faulting completion (a notifi‐
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cation that some error occurred during data processing). However, Rx and TPL Data‐
flow do not have the same capabilities. Rx observables are generally better than dataflow
blocks when doing anything related to timing. Dataflow blocks are generally better than
Rx observables when doing parallel processing. Conceptually, Rx works more like set‐
ting up callbacks: each step in the observable directly calls the next step. In contrast,
each block in a dataflow mesh is very independent from all the other blocks. Both Rx
and TPL Dataflow have their own uses, with some amount of overlap. However, they
also work quite well together; we’ll cover Rx and TPL Dataflow interoperability in
Recipe 7.7.

The most common block types are TransformBlock<TInput, TOutput> (similar to
LINQ’s Select), TransformManyBlock<TInput, TOutput> (similar to LINQ’s Select
Many), and ActionBlock<T>, which executes a delegate for each data item. For more
information on TPL Dataflow, I recommend the MSDN documentation and the “Guide
to Implementing Custom TPL Dataflow Blocks.”

1.6. Introduction to Multithreaded Programming
A thread is an independent executor. Each process has multiple threads in it, and each
of those threads can be doing different things simultaneously. Each thread has its own
independent stack but shares the same memory with all the other threads in a process.
In some applications, there is one thread that is special. User interface applications have
a single UI thread; Console applications have a single main thread.

Every .NET application has a thread pool. The thread pool maintains a number of
worker threads that are waiting to execute whatever work you have for them to do. The
thread pool is responsible for determining how many threads are in the thread pool at
any time. There are dozens of configuration settings you can play with to modify this
behavior, but I recommend that you leave it alone; the thread pool has been carefully
tuned to cover the vast majority of real-world scenarios.

There is almost no need to ever create a new thread yourself. The only time you should
ever create a Thread instance is if you need an STA thread for COM interop.

A thread is a low-level abstraction. The thread pool is a slightly higher level of abstrac‐
tion; when code queues work to the thread pool, it will take care of creating a thread if
necessary. The abstractions covered in this book are higher still: parallel and dataflow
processing queues work to the thread pool as necessary. Code using these higher ab‐
stractions is easier to get right.

For this reason, the Thread and BackgroundWorker types are not covered at all in this
book. They have had their time, and that time is over.
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1.7. Collections for Concurrent Applications
There are a couple of collection categories that are useful for concurrent programming:
concurrent collections and immutable collections. Both of these collection categories
are covered in Chapter 8. Concurrent collections allow multiple threads to update them
simulatenously in a safe way. Most concurrent collections use snapshots to allow one
thread to enumerate the values while another thread may be adding or removing values.
Concurrent collections are usually more efficient than just protecting a regular collec‐
tion with a lock.

Immutable collections are a bit different. An immutable collection cannot actually be
modified; instead, to modify an immutable collection, you create a new collection that
represents the modified collection. This sounds horribly inefficient, but immutable
collections share as much memory as possible between collection instances, so it’s not
as bad as it sounds. The nice thing about immutable collections is that all operations
are pure, so they work very well with functional code.

1.8. Modern Design
Most concurrent technologies have one similar aspect: they are functional in nature. I
don’t mean functional as in “they get the job done,” but rather functional as a style of
programming that is based on function composition. If you adopt a functional mindset,
your concurrent designs will be less convoluted.

One principle of functional programming is purity (that is, avoiding side effects). Each
piece of the solution takes some value(s) as input and produces some value(s) as output.
As much as possible, you should avoid having these pieces depend on global (or shared)
variables or update global (or shared) data structures. This is true whether the piece is
an async method, a parallel task, an Rx operation, or a dataflow block. Of course, sooner
or later your computations will have to have an effect, but you’ll find your code is cleaner
if you can handle the processing with pure pieces and then perform updates with the
results.

Another principle of functional programming is immutability. Immutability means that
a piece of data cannot change. One reason that immutable data is useful for concurrent
programs is that you never need synchronization for immutable data; the fact that it
cannot change makes synchronization unnecessary. Immutable data also helps you
avoid side effects. As of this writing (2014), there isn’t much adoption of immutable
data, but this book has several receipes covering immutable data structures.

1.9. Summary of Key Technologies
The .NET framework has had some support for asynchronous programming since the
very beginning. However, asynchronous programming was difficult until 2012,
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when .NET 4.5 (along with C# 5.0 and VB 2012) introduced the async and await
keywords. This book will use the modern async/await approach for all asynchronous
recipes, and we also have some recipes showing how to interoperate between async and
the older asynchronous programming patterns. If you need support for older platforms,
get the Microsoft.Bcl.Async NuGet package.

Do not use Microsoft.Bcl.Async to enable async code on ASP.NET
running on .NET 4.0! The ASP.NET pipeline was updated in .NET
4.5 to be async-aware, and you must use .NET 4.5 or newer for async
ASP.NET projects.

The Task Parallel Library was introduced in .NET 4.0 with full support for both data
and task parallelism. However, it is not normally available on platforms with fewer
resources, such as mobile phones. The TPL is built in to the .NET framework.

The Reactive Extensions team has worked hard to support as many platforms as pos‐
sible. Reactive Extensions, like async and await, provide benefits for all sorts of appli‐
cations, both client and server. Rx is available in the Rx-Main NuGet package.

The TPL Dataflow library only supports newer platforms. TPL Dataflow is officially
distributed in the Microsoft.Tpl.Dataflow NuGet package.

Concurrent collections are part of the full .NET framework, while immutable collec‐
tions are available in the Microsoft.Bcl.Immutable NuGet package. Table 1-1 sum‐
marizes the support of key platforms for different techniques.

Table 1-1. Platform support for concurrency
Platform async Parallel Rx Dataflow Concurrent collections Immutable collections

.NET 4.5

.NET 4.0

Mono iOS/Droid

Windows Store

Windows Phone Apps 8.1

Windows Phone SL 8.0

Windows Phone SL 7.1

Silverlight 5
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CHAPTER 2

Async Basics

This chapter introduces you to the basics of using async and await for asynchronous
operations. This chapter only deals with naturally asynchronous operations, which are
operations such as HTTP requests, database commands, and web service calls.

If you have a CPU-intensive operation that you want to treat as though it were asyn‐
chronous (e.g., so it doesn’t block the UI thread), then see Chapter 3 and Recipe 7.4.
Also, this chapter only deals with operations that are started once and complete once;
if you need to handle streams of events, then see Chapter 5.

To use async on older platforms, install the NuGet package Microsoft.Bcl.Async into
your application. Some platforms support async natively, and some should have the
package installed (see Table 2-1):

Table 2-1. Platform support for async
Platform Dataflow support

.NET 4.5

.NET 4.0 NuGet

Mono iOS/Droid

Windows Store

Windows Phone Apps 8.1

Windows Phone SL 8.0

Windows Phone 7.1 NuGet

Silverlight 5 NuGet
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2.1. Pausing for a Period of Time
Problem
You need to (asynchronously) wait for a period of time. This can be useful when unit
testing or implementing retry delays. This solution can also be useful for simple time‐
outs.

Solution
The Task type has a static method Delay that returns a task that completes after the
specified time.

If you are using the Microsoft.Bcl.Async NuGet library, the Delay
member is on the TaskEx type, not the Task type.

This example defines a task that completes asynchronously, for use with unit testing.
When faking an asynchronous operation, it’s important to test at least synchronous
success and asynchronous success as well as asynchronous failure. This example returns
a task used for the asynchronous success case:

static async Task<T> DelayResult<T>(T result, TimeSpan delay)
{
    await Task.Delay(delay);
    return result;
}

This next example is a simple implementation of an exponential backoff, that is, a retry
strategy where you increase the delays between retries. Exponential backoff is a best
practice when working with web services to ensure the server does not get flooded with
retries.

For production code, I would recommend a more thorough solu‐
tion, such as the Transient Error Handling Block in Microsoft’s En‐
terprise Library; the following code is just a simple example of
Task.Delay usage.

static async Task<string> DownloadStringWithRetries(string uri)
{
    using (var client = new HttpClient())
    {
        // Retry after 1 second, then after 2 seconds, then 4.
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        var nextDelay = TimeSpan.FromSeconds(1);
        for (int i = 0; i != 3; ++i)
        {
            try
            {
                return await client.GetStringAsync(uri);
            }
            catch
            {
            }

            await Task.Delay(nextDelay);
            nextDelay = nextDelay + nextDelay;
        }

        // Try one last time, allowing the error to propogate.
        return await client.GetStringAsync(uri);
    }
}

This final example uses Task.Delay as a simple timeout; in this case, the desired se‐
mantics are to return null if the service does not respond within three seconds:

static async Task<string> DownloadStringWithTimeout(string uri)
{
    using (var client = new HttpClient())
    {
        var downloadTask = client.GetStringAsync(uri);
        var timeoutTask = Task.Delay(3000);

        var completedTask = await Task.WhenAny(downloadTask, timeoutTask);
        if (completedTask == timeoutTask)
            return null;
        return await downloadTask;
    }
}

Discussion
Task.Delay is a fine option for unit testing asynchronous code or for implementing
retry logic. However, if you need to implement a timeout, a CancellationToken is usu‐
ally a better choice.

See Also
Recipe 2.5 covers how Task.WhenAny is used to determine which task completes first.
Recipe 9.3 covers using CancellationToken as a timeout.
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2.2. Returning Completed Tasks
Problem
You need to implement a synchronous method with an asynchronous signature. This
situation can arise if you are inheriting from an asynchronous interface or base class
but wish to implement it synchronously. This technique is particularly useful when unit
testing asynchronous code, when you need a simple stub or mock for an asynchronous
interface.

Solution
You can use Task.FromResult to create and return a new Task<T> that is already com‐
pleted with the specified value:

interface IMyAsyncInterface
{
    Task<int> GetValueAsync();
}

class MySynchronousImplementation : IMyAsyncInterface
{
    public Task<int> GetValueAsync()
    {
        return Task.FromResult(13);
    }
}

If you’re using Microsoft.Bcl.Async, the FromResult method is on
the TaskEx type.

Discussion
If you are implementing an asynchronous interface with synchronous code, avoid any
form of blocking. It is not natural for an asynchronous method to block and then return
a completed task. For a counterexample, consider the Console text readers in .NET 4.5.
Console.In.ReadLineAsync will actually block the calling thread until a line is read,
and then will return a completed task. This behavior is not intuitive and has surprised
many developers. If an asynchronous method blocks, it prevents the calling thread from
starting other tasks, which interferes with concurrency and may even cause a deadlock.

Task.FromResult provides synchronous tasks only for successful results. If you need a
task with a different kind of result (e.g., a task that is completed with a
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NotImplementedException), then you can create your own helper method using Task
CompletionSource:

static Task<T> NotImplementedAsync<T>()
{
    var tcs = new TaskCompletionSource<T>();
    tcs.SetException(new NotImplementedException());
    return tcs.Task;
}

Conceptually, Task.FromResult is just a shorthand for TaskCompletionSource, very
similar to the preceding code.

If you regularly use Task.FromResult with the same value, consider caching the actual
task. For example, if you create a Task<int> with a zero result once, then you avoid
creating extra instances that will have to be garbage-collected:

private static readonly Task<int> zeroTask = Task.FromResult(0);
static Task<int> GetValueAsync()
{
    return zeroTask;
}

See Also
Recipe 6.1 covers unit testing asynchronous methods.

Recipe 10.1 covers inheritance of async methods.

2.3. Reporting Progress
Problem
You need to respond to progress while an asynchronous operation is executing.

Solution
Use the provided IProgress<T> and Progress<T> types. Your async method should
take an IProgress<T> argument; the T is whatever type of progress you need to report:

static async Task MyMethodAsync(IProgress<double> progress = null)
{
    double percentComplete = 0;
    while (!done)
    {
        ...
        if (progress != null)
            progress.Report(percentComplete);
    }
}

2.3. Reporting Progress | 21



Calling code can use it as such:

static async Task CallMyMethodAsync()
{
    var progress = new Progress<double>();
    progress.ProgressChanged += (sender, args) =>
    {
        ...
    };
    await MyMethodAsync(progress);
}

Discussion
By convention, the IProgress<T> parameter may be null if the caller does not need
progress reports, so be sure to check for this in your async method.

Bear in mind that the IProgress<T>.Report method may be asynchronous. This means
that MyMethodAsync may continue executing before the progress is actually reported.
For this reason, it’s best to define T as an immutable type or at least a value type. If T is
a mutable reference type, then you’ll have to create a separate copy yourself each time
you call IProgress<T>.Report.

Progress<T> will capture the current context when it is constructed and will invoke its
callback within that context. This means that if you construct the Progress<T> on the
UI thread, then you can update the UI from its callback, even if the asynchronous
method is invoking Report from a background thread.

When a method supports progress reporting, it should also make a best effort to support
cancellation.

See Also
Recipe 9.4 covers how to support cancellation in an asynchronous method.

2.4. Waiting for a Set of Tasks to Complete
Problem
You have several tasks and need to wait for them all to complete.

Solution
The framework provides a Task.WhenAll method for this purpose. This method takes
several tasks and returns a task that completes when all of those tasks have completed:
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Task task1 = Task.Delay(TimeSpan.FromSeconds(1));
Task task2 = Task.Delay(TimeSpan.FromSeconds(2));
Task task3 = Task.Delay(TimeSpan.FromSeconds(1));

await Task.WhenAll(task1, task2, task3);

If all the tasks have the same result type and they all complete successfully, then the
Task.WhenAll task will return an array containing all the task results:

Task task1 = Task.FromResult(3);
Task task2 = Task.FromResult(5);
Task task3 = Task.FromResult(7);

int[] results = await Task.WhenAll(task1, task2, task3);

// "results" contains { 3, 5, 7 }

There is an overload of Task.WhenAll that takes an IEnumerable of tasks; however, I
do not recommend that you use it. Whenever I mix asynchronous code with LINQ, I
find the code is clearer when I explicitly “reify” the sequence (i.e., evaluate the sequence,
creating a collection):

static async Task<string> DownloadAllAsync(IEnumerable<string> urls)
{
    var httpClient = new HttpClient();

    // Define what we're going to do for each URL.
    var downloads = urls.Select(url => httpClient.GetStringAsync(url));
    // Note that no tasks have actually started yet
    //  because the sequence is not evaluated.

    // Start all URLs downloading simultaneously.
    Task<string>[] downloadTasks = downloads.ToArray();
    // Now the tasks have all started.

    // Asynchronously wait for all downloads to complete.
    string[] htmlPages = await Task.WhenAll(downloadTasks);

    return string.Concat(htmlPages);
}

If you are using the Microsoft.Bcl.Async NuGet library, the WhenAll
member is on the TaskEx type, not the Task type.
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Discussion
If any of the tasks throws an exception, then Task.WhenAll will fault its returned task
with that exception. If multiple tasks throw an exception, then all of those exceptions
are placed on the Task returned by Task.WhenAll. However, when that task is awaited,
only one of them will be thrown. If you need each specific exception, you can examine
the Exception property on the Task returned by Task.WhenAll:

static async Task ThrowNotImplementedExceptionAsync()
{
    throw new NotImplementedException();
}

static async Task ThrowInvalidOperationExceptionAsync()
{
    throw new InvalidOperationException();
}

static async Task ObserveOneExceptionAsync()
{
    var task1 = ThrowNotImplementedExceptionAsync();
    var task2 = ThrowInvalidOperationExceptionAsync();

    try
    {
        await Task.WhenAll(task1, task2);
    }
    catch (Exception ex)
    {
        // "ex" is either NotImplementedException or InvalidOperationException.
        ...
    }
}

static async Task ObserveAllExceptionsAsync()
{
    var task1 = ThrowNotImplementedExceptionAsync();
    var task2 = ThrowInvalidOperationExceptionAsync();

    Task allTasks = Task.WhenAll(task1, task2);
    try
    {
        await allTasks;
    }
    catch
    {
        AggregateException allExceptions = allTasks.Exception;
        ...
    }
}
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Most of the time, I do not observe all the exceptions when using Task.WhenAll. It is
usually sufficient to just respond to the first error that was thrown, rather than all of
them.

See Also
Recipe 2.5 covers a way to wait for any of a collection of tasks to complete.

Recipe 2.6 covers waiting for a collection of tasks to complete and performing actions
as each one completes.

Recipe 2.8 covers exception handling for async Task methods.

2.5. Waiting for Any Task to Complete
Problem
You have several tasks and need to respond to just one of them completing. The most
common situation for this is when you have multiple independent attempts at an op‐
eration, with a first-one-takes-all kind of structure. For example, you could request stock
quotes from multiple web services simultaneously, but you only care about the first one
that responds.

Solution
Use the Task.WhenAny method. This method takes a sequence of tasks and returns a
task that completes when any of the tasks complete. The result of the returned task is
the task that completed. Don’t worry if that sounds confusing; it’s one of those things
that’s difficult to explain but easy to demonstrate:

// Returns the length of data at the first URL to respond.
private static async Task<int> FirstRespondingUrlAsync(string urlA, string urlB)
{
    var httpClient = new HttpClient();

    // Start both downloads concurrently.
    Task<byte[]> downloadTaskA = httpClient.GetByteArrayAsync(urlA);
    Task<byte[]> downloadTaskB = httpClient.GetByteArrayAsync(urlB);

    // Wait for either of the tasks to complete.
    Task<byte[]> completedTask =
        await Task.WhenAny(downloadTaskA, downloadTaskB);

    // Return the length of the data retrieved from that URL.
    byte[] data = await completedTask;
    return data.Length;
}
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If you are using the Microsoft.Bcl.Async NuGet library, the WhenAny
member is on the TaskEx type, not the Task type.

Discussion
The task returned by Task.WhenAny never completes in a faulted or canceled state. It
always results in the first Task to complete; if that task completed with an exception,
then the exception is not propogated to the task returned by Task.WhenAny. For this
reason, you should usually await the task after it has completed.

When the first task completes, consider whether to cancel the remaining tasks. If the
other tasks are not canceled but are also never awaited, then they are abandoned. Aban‐
doned tasks will run to completion, and their results will be ignored. Any exceptions
from those abandoned tasks will also be ignored.

It is possible to use Task.WhenAny to implement timeouts (e.g., using Task.Delay as one
of the tasks), but it’s not recommended. It’s more natural to express timeouts with can‐
cellation, and cancellation has the added benefit that it can actually cancel the opera‐
tion(s) if they time out.

Another antipattern for Task.WhenAny is handling tasks as they complete. At first it
seems like a reasonable approach to keep a list of tasks and remove each task from the
list as it completes. The problem with this approach is that it executes in O(N^2) time,
when an O(N) algorithm exists. The proper O(N) algorithm is discussed in Recipe 2.6.

See Also
Recipe 2.4 covers asynchronously waiting for all of a collection of tasks to complete.

Recipe 2.6 covers waiting for a collection of tasks to complete and performing actions
as each one completes.

Recipe 9.3 covers using a cancellation token to implement timeouts.

2.6. Processing Tasks as They Complete
Problem
You have a collection of tasks to await, and you want to do some processing on each
task after it completes. However, you want to do the processing for each one as soon as
it completes, not waiting for any of the other tasks.

26 | Chapter 2: Async Basics



As an example, this is some code that kicks off three delay tasks and then awaits each
one:

static async Task<int> DelayAndReturnAsync(int val)
{
    await Task.Delay(TimeSpan.FromSeconds(val));
    return val;
}

// Currently, this method prints "2", "3", and "1".
// We want this method to print "1", "2", and "3".
static async Task ProcessTasksAsync()
{
    // Create a sequence of tasks.
    Task<int> taskA = DelayAndReturnAsync(2);
    Task<int> taskB = DelayAndReturnAsync(3);
    Task<int> taskC = DelayAndReturnAsync(1);
    var tasks = new[] { taskA, taskB, taskC };

    // Await each task in order.
    foreach (var task in tasks)
    {
        var result = await task;
        Trace.WriteLine(result);
    }
}

The code currently awaits each task in sequence order, even though the second task in
the sequence is the first one to complete. What we want is to do the processing (e.g.,
Trace.WriteLine) as each task completes without waiting for the others.

Solution
There are a few different approaches you can take to solve this problem. The one de‐
scribed first in this recipe is the recommended approach; another is described in the
Discussion section.

The easiest solution is to restructure the code by introducing a higher-level async
method that handles awaiting the task and processing its result. Once the processing is
factored out, the code is significantly simplified:

static async Task<int> DelayAndReturnAsync(int val)
{
    await Task.Delay(TimeSpan.FromSeconds(val));
    return val;
}

static async Task AwaitAndProcessAsync(Task<int> task)
{
    var result = await task;
    Trace.WriteLine(result);
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}

// This method now prints "1", "2", and "3".
static async Task ProcessTasksAsync()
{
    // Create a sequence of tasks.
    Task<int> taskA = DelayAndReturnAsync(2);
    Task<int> taskB = DelayAndReturnAsync(3);
    Task<int> taskC = DelayAndReturnAsync(1);
    var tasks = new[] { taskA, taskB, taskC };

    var processingTasks = (from t in tasks
        select AwaitAndProcessAsync(t)).ToArray();

    // Await all processing to complete
    await Task.WhenAll(processingTasks);
}

Alternatively, this can be written as:

static async Task<int> DelayAndReturnAsync(int val)
{
    await Task.Delay(TimeSpan.FromSeconds(val));
    return val;
}

// This method now prints "1", "2", and "3".
static async Task ProcessTasksAsync()
{
    // Create a sequence of tasks.
    Task<int> taskA = DelayAndReturnAsync(2);
    Task<int> taskB = DelayAndReturnAsync(3);
    Task<int> taskC = DelayAndReturnAsync(1);
    var tasks = new[] { taskA, taskB, taskC };

    var processingTasks = tasks.Select(async t =>
    {
        var result = await t;
        Trace.WriteLine(result);
    }).ToArray();

    // Await all processing to complete
    await Task.WhenAll(processingTasks);
}

This refactoring is the cleanest and most portable way to solve this problem. However,
it is subtly different than the original code. This solution will do the task processing
concurrently, whereas the original code would do the task processing one at a time. Most
of the time this is not a problem, but if it is not acceptable for your situation, then
consider using locks (Recipe 11.2) or the following alternative solution.
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Discussion
If refactoring the code like this is not a palatable solution, then there is an alternative.
Stephen Toub and Jon Skeet have both developed an extension method that returns an
array of tasks that will complete in order. Stephen Toub’s solution is available on the
Parallel Programming with .NET blog, and Jon Skeet’s solution is available on his coding
blog.

This extension method is also available in the open source AsyncEx
library, available in the Nito.AsyncEx NuGet package.

Using an extension method like OrderByCompletion minimizes the changes to the
original code:

static async Task<int> DelayAndReturnAsync(int val)
{
    await Task.Delay(TimeSpan.FromSeconds(val));
    return val;
}

// This method now prints "1", "2", and "3".
static async Task UseOrderByCompletionAsync()
{
    // Create a sequence of tasks.
    Task<int> taskA = DelayAndReturnAsync(2);
    Task<int> taskB = DelayAndReturnAsync(3);
    Task<int> taskC = DelayAndReturnAsync(1);
    var tasks = new[] { taskA, taskB, taskC };

    // Await each one as they complete.
    foreach (var task in tasks.OrderByCompletion())
    {
        var result = await task;
        Trace.WriteLine(result);
    }
}

See Also
Recipe 2.4 covers asynchronously waiting for a sequence of tasks to complete.
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2.7. Avoiding Context for Continuations
Problem
When an async method resumes after an await, by default it will resume executing
within the same context. This can cause performance problems if that context was a UI
context and a large number of async methods are resuming on the UI context.

Solution
To avoid resuming on a context, await the result of ConfigureAwait and pass false
for its continueOnCapturedContext parameter:

async Task ResumeOnContextAsync()
{
    await Task.Delay(TimeSpan.FromSeconds(1));

    // This method resumes within the same context.
}

async Task ResumeWithoutContextAsync()
{
    await Task.Delay(TimeSpan.FromSeconds(1)).ConfigureAwait(false);

    // This method discards its context when it resumes.
}

Discussion
Having too many continuations run on the UI thread can cause a performance problem.
This type of performance problem is difficult to diagnose, since it is not a single method
that is slowing down the system. Rather, the UI performance begins to suffer from
“thousands of paper cuts” as the application grows more complex.

The real question is, how many continuations on the UI thread are too many? There is
no hard-and-fast answer, but Lucian Wischik of Microsoft has publicized the guide‐
line used by the WinRT team: a hundred or so per second is OK, but a thousand or so
per second is too many.

It’s best to avoid this right at the beginning. For every async method you write, if it
doesn’t need to resume to its original context, then use ConfigureAwait. There’s no
disadvanage to doing so.

It’s also a good idea to be context aware when writing async code. Normally, an async
method should either require context (dealing with UI elements or ASP.NET requests/
responses), or it should be free from context (doing background operations). If you have
an async method that has parts requiring context and parts context free, consider split‐
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ting it up into two (or more) async methods. This helps keep your code better organized
into layers.

See Also
Chapter 1 covers an introduction to asynchronous programming.

2.8. Handling Exceptions from async Task Methods
Problem
Exception handling is a critical part of any design. It’s easy to design for the success case
but a design is not correct until it also handles the failure cases. Fortunately, handling
exceptions from async Task methods is straightforward.

Solution
Exceptions can be caught by a simple try/catch, just like you would for synchronous
code:

static async Task ThrowExceptionAsync()
{
  await Task.Delay(TimeSpan.FromSeconds(1));
  throw new InvalidOperationException("Test");
}

static async Task TestAsync()
{
  try
  {
    await ThrowExceptionAsync();
  }
  catch (InvalidOperationException)
  {
  }
}

Exceptions raised from async Task methods are placed on the returned Task. They are
only raised when the returned Task is awaited:

static async Task ThrowExceptionAsync()
{
  await Task.Delay(TimeSpan.FromSeconds(1));
  throw new InvalidOperationException("Test");
}

static async Task TestAsync()
{
  // The exception is thrown by the method and placed on the task.
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  Task task = ThrowExceptionAsync();
  try
  {
    // The exception is reraised here, where the task is awaited.
    await task;
  }
  catch (InvalidOperationException)
  {
    // The exception is correctly caught here.
  }
}

Discussion
When an exception is thrown out of an async Task method, that exception is captured
and put on the returned Task. Since async void methods don’t have a Task to put their
exception on, their behavior is different; we’ll cover that in another recipe.

When you await a faulted Task, the first exception on that task is rethrown. If you’re
familiar with the problems of rethrowing exceptions, you may be wondering about stack
traces. Rest assured: when the exception is rethrown, the original stack trace is correctly
preserved.

This setup sounds somewhat complicated, but all this complexity works together so that
the simple scenario has simple code. In the common case, your code should propagate
exceptions from asynchronous methods that it calls; all it has to do is await the task
returned from that asynchronous method, and the exception will be propagated natu‐
rally.

There are some situations (such as Task.WhenAll) where a Task may have multiple
exceptions, and await will only rethrow the first one. See Recipe 2.4 for an example of
handling all exceptions.

See Also
Recipe 2.4 covers waiting for multiple tasks.

Recipe 2.9 covers techniques for catching exceptions from async void methods.

Recipe 6.2 covers unit testing exceptions thrown from async Task methods.

2.9. Handling Exceptions from async Void Methods
Problem
You have an async void method and need to handle exceptions propagated out of that
method.
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Solution
There is no good solution. If at all possible, change the method to return Task instead
of void. In some situations, this isn’t possible; for example, let’s say you need to unit test
an ICommand implementation (which must return void). In this case, you can provide a
Task-returning overload of your Execute method as such:

sealed class MyAsyncCommand : ICommand
{
    async void ICommand.Execute(object parameter)
    {
        await Execute(parameter);
    }

    public async Task Execute(object parameter)
    {
        ... // Asynchronous command implementation goes here.
    }

    ... // Other members (CanExecute, etc)
}

It’s best to avoid propagating exceptions out of async void methods. If you must use
an async void method, consider wrapping all of its code in a try block and handling
the exception directly.

There is another solution for handling exceptions from async void methods. When an
async void method propagates an exception, that exception is raised on the Synchro
nizationContext that was active at the time the async void method started executing.
If your execution environment provides a SynchronizationContext, then it usually has
a way to handle these top-level exceptions at a global scope. For example, WPF has
Application.DispatcherUnhandledException, WinRT has Application.Unhandle
dException, and ASP.NET has Application_Error.

It is also possible to handle exceptions from async void methods by controlling the
SynchronizationContext. Writing your own SynchronizationContext is not trivial,
but you can use the AsyncContext type from the free Nito.AsyncEx NuGet library.
AsyncContext is particularly useful for applications that do not have a built-in Synchro
nizationContext, such as Console applications and Win32 services. The next example
uses AsyncContext in a Console application; in this example, the async method does
return Task, but AsyncContext also works for async void methods:

static class Program
{
  static int Main(string[] args)
  {
    try
    {
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      return AsyncContext.Run(() => MainAsync(args));
    }
    catch (Exception ex)
    {
      Console.Error.WriteLine(ex);
      return -1;
    }
  }

  static async Task<int> MainAsync(string[] args)
  {
    ...
  }
}

Discussion
One reason to prefer async Task over async void is that Task-returning methods are
easier to test. At the very least, overloading void-returning methods with Task-
returning methods will give you a testable API surface.

If you do need to provide your own SynchronizationContext type (such as AsyncCon
text), be sure not to install that SynchronizationContext on any threads that don’t
belong to you. As a general rule, you should not place a SynchronizationContext on
any thread that already has one (such as UI or ASP.NET request threads); nor should
you place a SynchronizationContext on thread-pool threads. The main thread of a
Console application does belong to you, and so do any threads you manually create
yourself.

The AsyncContext type is in the Nito.AsyncEx NuGet package.

See Also
Recipe 2.8 covers exception handling with async Task methods.

Recipe 6.3 covers unit testing async void methods. 
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CHAPTER 3

Parallel Basics

In this chapter, we’ll cover patterns for parallel programming. Parallel programming is
used to split up CPU-bound pieces of work and divide them among multiple threads.
These parallel processing recipes only consider CPU-bound work. If you have naturally
asynchronous operations (such as I/O-bound work) that you wish to execute in parallel,
then see Chapter 2, and Recipe 2.4 in particular.

The parallel processing abstractions covered in this chapter are part of the Task Parallel
Library (TPL). This is built in to the .NET framework but is not available on all platforms
(see Table 3-1):

Table 3-1. Platform support for TPL
Platform Parallel support

.NET 4.5

.NET 4.0

Mono iOS/Droid

Windows Store

Windows Phone Apps 8.1

Windows Phone SL 8.0

Windows Phone SL 7.1

Silverlight 5

3.1. Parallel Processing of Data
Problem
You have a collection of data and you need to perform the same operation on each
element of the data. This operation is CPU-bound and may take some time.
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Solution
The Parallel type contains a ForEach method specifically designed for this. This ex‐
ample takes a collection of matrices and rotates them all:

void RotateMatrices(IEnumerable<Matrix> matrices, float degrees)
{
    Parallel.ForEach(matrices, matrix => matrix.Rotate(degrees));
}

There are some situations where you’ll want to stop the loop early, such as if you en‐
counter an invalid value. This example inverts each matrix, but if an invalid matrix is
encountered, it will abort the loop:

void InvertMatrices(IEnumerable<Matrix> matrices)
{
    Parallel.ForEach(matrices, (matrix, state) =>
    {
        if (!matrix.IsInvertible)
            state.Stop();
        else
            matrix.Invert();
    });
}

A more common situation is when you want the ability to cancel a parallel loop. This
is different than stopping the loop; a loop is stopped from inside the loop, and it is
canceled from outside the loop. For example, a cancel button may cancel a Cancella
tionTokenSource, canceling a parallel loop like this one:

void RotateMatrices(IEnumerable<Matrix> matrices, float degrees,
    CancellationToken token)
{
    Parallel.ForEach(matrices,
        new ParallelOptions { CancellationToken = token },
        matrix => matrix.Rotate(degrees));
}

One thing to keep in mind is that each parallel task may run on a different thread, so
any shared state must be protected. The following example inverts each matrix and
counts the number of matrices that could not be inverted:

// Note: this is not the most efficient implementation.
// This is just an example of using a lock to protect shared state.
int InvertMatrices(IEnumerable<Matrix> matrices)
{
    object mutex = new object();
    int nonInvertibleCount = 0;
    Parallel.ForEach(matrices, matrix =>
    {
        if (matrix.IsInvertible)
        {
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            matrix.Invert();
        }
        else
        {
            lock (mutex)
            {
                ++nonInvertibleCount;
            }
        }
    });
    return nonInvertibleCount;
}

Discussion
The Parallel.ForEach method allows parallel processing over a sequence of values. A
similar solution is Parallel LINQ (PLINQ). Parallel LINQ provides much of the same
capabilities with a LINQ-like syntax. One difference between Parallel and PLINQ is
that PLINQ assumes it can use all the cores on the computer, while Parallel will dy‐
namically react to changing CPU conditions.

Parallel.ForEach is a parallel foreach loop. If you need to do a parallel for loop, the
Parallel class also supports a Parallel.For method. Parallel.For is especially useful
if you have multiple arrays of data that all take the same index.

See Also
Recipe 3.2 covers aggregating a series of values in parallel, including sums and averages.

Recipe 3.5 covers the basics of PLINQ.

Chapter 9 covers cancellation.

3.2. Parallel Aggregation
Problem
At the conclusion of a parallel operation, you have to aggregate the results. Examples of
aggregation are sums, averages, etc.

Solution
The Parallel class supports aggregation through the concept of local values, which are
variables that exist locally within a parallel loop. This means that the body of the loop
can just access the value directly, without having to worry about synchronization. When
the loop is ready to aggregate each of its local results, it does so with the localFinal
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ly delegate. Note that the localFinally delegate does need to synchronize access to the
variable that holds the final result. Here’s an example of a parallel sum:

// Note: this is not the most efficient implementation.
// This is just an example of using a lock to protect shared state.
static int ParallelSum(IEnumerable<int> values)
{
    object mutex = new object();
    int result = 0;
    Parallel.ForEach(source: values,
        localInit: () => 0,
        body: (item, state, localValue) => localValue + item,
        localFinally: localValue =>
        {
            lock (mutex)
                result += localValue;
        });
    return result;
}

Parallel LINQ has more natural aggregation support than the Parallel class:

static int ParallelSum(IEnumerable<int> values)
{
    return values.AsParallel().Sum();
}

OK, that was a cheap shot, since PLINQ has built-in support for many common oper‐
ators (such as Sum). PLINQ also has generic aggregation support via the Aggregate
operator:

static int ParallelSum(IEnumerable<int> values)
{
    return values.AsParallel().Aggregate(
        seed: 0,
        func: (sum, item) => sum + item
    );
}

Discussion
If you are already using the Parallel class, you may want to use its aggregation support.
Otherwise, in most scenarios, the PLINQ support is more expressive and has shorter
code.

See Also
Recipe 3.5 covers the basics of PLINQ.
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3.3. Parallel Invocation
Problem
You have a number of methods to call in parallel, and these methods are (mostly) in‐
dependent of each other.

Solution
The Parallel class contains a simple Invoke member that is designed for this scenar‐
io. Here’s an example that splits an array in half and processes each half independently:

static void ProcessArray(double[] array)
{
    Parallel.Invoke(
        () => ProcessPartialArray(array, 0, array.Length / 2),
        () => ProcessPartialArray(array, array.Length / 2, array.Length)
    );
}

static void ProcessPartialArray(double[] array, int begin, int end)
{
    // CPU-intensive processing...
}

You can also pass an array of delegates to the Parallel.Invoke method if the number
of invocations is not known until runtime:

static void DoAction20Times(Action action)
{
    Action[] actions = Enumerable.Repeat(action, 20).ToArray();
    Parallel.Invoke(actions);
}

Parallel.Invoke supports cancellation just like the other members of the Parallel
class:

static void DoAction20Times(Action action, CancellationToken token)
{
    Action[] actions = Enumerable.Repeat(action, 20).ToArray();
    Parallel.Invoke(new ParallelOptions { CancellationToken = token }, actions);
}

Discussion
Parallel.Invoke is a great solution for simple parallel invocation. However, it’s not a
great fit if you want to invoke an action for each item of input data (use Parallel.ForE
ach instead), or if each action produces some output (use Parallel LINQ instead).
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See Also
Recipe 3.1 covers Parallel.ForEach, which invokes an action for each item of data.

Recipe 3.5 covers Parallel LINQ.

3.4. Dynamic Parallelism
Problem
You have a more complex parallel situation where the structure and number of parallel
tasks depends on information known only at runtime.

Solution
The Task Parallel Library (TPL) is centered around the Task type. The Parallel class
and Parallel LINQ are just convenience wrappers around the powerful Task. When you
need dynamic parallelism, it’s easiest to use the Task type directly.

Here is one example where some expensive processing needs to be done for each node
of a binary tree. The structure of the tree won’t be known until runtime, so this is a good
scenario for dynamic parallelism. The Traverse method processes the current node
and then creates two child tasks, one for each branch underneath the node (for this
example, we’re assuming that the parent nodes must be processed before the children).
The ProcessTree method starts the processing by creating a top-level parent task and
waiting for it to complete:

void Traverse(Node current)
{
    DoExpensiveActionOnNode(current);
    if (current.Left != null)
    {
        Task.Factory.StartNew(() => Traverse(current.Left),
            CancellationToken.None,
            TaskCreationOptions.AttachedToParent,
            TaskScheduler.Default);
    }
    if (current.Right != null)
    {
        Task.Factory.StartNew(() => Traverse(current.Right),
            CancellationToken.None,
            TaskCreationOptions.AttachedToParent,
            TaskScheduler.Default);
    }
}

public void ProcessTree(Node root)
{
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    var task = Task.Factory.StartNew(() => Traverse(root),
        CancellationToken.None,
        TaskCreationOptions.None,
        TaskScheduler.Default);
    task.Wait();
}

If you don’t have a parent/child kind of situation, you can schedule any task to run after
another by using a task continuation. The continuation is a separate task that executes
when the original task completes:

Task task = Task.Factory.StartNew(
    () => Thread.Sleep(TimeSpan.FromSeconds(2)),
    CancellationToken.None,
    TaskCreationOptions.None,
    TaskScheduler.Default);
Task continuation = task.ContinueWith(
    t => Trace.WriteLine("Task is done"),
    CancellationToken.None,
    TaskContinuationOptions.None,
    TaskScheduler.Default);
// The "t" argument to the continuation is the same as "task".

Discussion
The preceding example code uses CancellationToken.None and TaskScheduler.De
fault. Cancellation tokens are covered in Recipe 9.2, and task schedulers are covered
in Recipe 12.3. It is always a good idea to explicitly specify the TaskScheduler used by
StartNew and ContinueWith.

This arrangement of parent and child tasks is common with dynamic parallelism; how‐
ever, it is not required. It is equally possible to store each new task in a threadsafe
collection and then wait for them all to complete using Task.WaitAll.

Using Task for parallel processing is completely different than us‐
ing Task for asynchronous processing. See below.

The Task type serves two purposes in concurrent programming: it can be a parallel task
or an asynchronous task. Parallel tasks may use blocking members, such as Task.Wait,
Task.Result, Task.WaitAll, and Task.WaitAny. Parallel tasks also commonly use At
tachedToParent to create parent/child relationships between tasks. Parallel tasks should
be created with Task.Run or Task.Factory.StartNew.

In contrast, asynchronous tasks should avoid blocking members and prefer await,
Task.WhenAll, and Task.WhenAny. Asynchronous tasks do not use
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AttachedToParent, but they can form an implicit kind of parent/child relationship by
awaiting another task.

See Also
Recipe 3.3 covers invoking a sequence of methods in parallel, when all the methods are
known at the start of the parallel work.

3.5. Parallel LINQ
Problem
You have parallel processing to perform on a sequence of data, producing another se‐
quence of data or a summary of that data.

Solution
Most developers are familiar with LINQ, which you can use to write pull-based calcu‐
lations over sequences. Parallel LINQ (PLINQ) extends this LINQ support with parallel
processing.

PLINQ works well in streaming scenarios, when you have a sequence of inputs and are
producing a sequence of outputs. Here’s a simple example that just multiplies each el‐
ement in a sequence by two (real-world scenarios will be much more CPU-intensive
than a simple multiply):

static IEnumerable<int> MultiplyBy2(IEnumerable<int> values)
{
    return values.AsParallel().Select(item => item * 2);
}

The example may produce its outputs in any order; this is the default for Parallel LINQ.
You can also specify the order to be preserved. The following example is still processed
in parallel, but preserves the original order:

static IEnumerable<int> MultiplyBy2(IEnumerable<int> values)
{
    return values.AsParallel().AsOrdered().Select(item => item * 2);
}

Another natural use of Parallel LINQ is to aggregate or summarize the data in parallel.
The following code performs a parallel summation:

static int ParallelSum(IEnumerable<int> values)
{
    return values.AsParallel().Sum();
}
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Discussion
The Parallel class is good for many scenarios, but PLINQ code is simpler when doing
aggregation or transforming one sequence to another. Bear in mind that the Paral
lel class is more friendly to other processes on the system than PLINQ; this is especially
a consideration if the parallel processing is done on a server machine.

PLINQ provides parallel versions of a wide variety of operators, including filtering
(Where), projection (Select), and a variety of aggregations, such as Sum, Average, and
the more generic Aggregate. In general, anything you can do with regular LINQ you
can do in parallel with PLINQ. This makes PLINQ a great choice if you have existing
LINQ code that would benefit from running in parallel.

See Also
Recipe 3.1 covers how to use the Parallel class to execute code for each element in a
sequence.

Recipe 9.5 covers how to cancel PLINQ queries. 
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CHAPTER 4

Dataflow Basics

TPL Dataflow is a powerful library that allows you to create a mesh or pipeline and then
(asynchronously) send your data through it. Dataflow is a very declarative style of cod‐
ing; normally, you completely define the mesh first and then start processing data. The
mesh ends up being a structure through which your data flows. This requires you to
think about your application a bit differently, but once you make that leap, Dataflow
becomes a natural fit for many scenarios.

Each mesh is comprised of various blocks that are linked to each other. The individual
blocks are simple and are responsible for a single step in the data processing. When a
block finishes working on its data, it will pass it along to any linked blocks.

To use TPL Dataflow, install the NuGet package Microsoft.Tpl.Dataflow into your
application. The TPL Dataflow library has limited platform support for older platforms
(Table 4-1):

Table 4-1. Platform support for TPL Dataflow
Platform Dataflow support

.NET 4.5

.NET 4.0

Mono iOS/Droid

Windows Store

Windows Phone Apps 8.1

Windows Phone SL 8.0

Windows Phone SL 7.1

Silverlight 5
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4.1. Linking Blocks
Problem
You need to link dataflow blocks into each other to create a mesh.

Solution
The blocks provided by the TPL Dataflow library define only the most basic members.
Many of the useful TPL Dataflow methods are actually extension methods. In this case,
we’re interested in LinkTo:

var multiplyBlock = new TransformBlock<int, int>(item => item * 2);
var subtractBlock = new TransformBlock<int, int>(item => item - 2);

// After linking, values that exit multiplyBlock will enter subtractBlock.
multiplyBlock.LinkTo(subtractBlock);

By default, linked dataflow blocks only propagate data; they do not propagate comple‐
tion (or errors). If your dataflow is linear (like a pipeline), then you’ll probably want to
propagate completion. To propagate completion (and errors), you can set the Propaga
teCompletion option on the link:

var multiplyBlock = new TransformBlock<int, int>(item => item * 2);
var subtractBlock = new TransformBlock<int, int>(item => item - 2);

var options = new DataflowLinkOptions { PropagateCompletion = true };
multiplyBlock.LinkTo(subtractBlock, options);

...

// The first block's completion is automatically propagated to the second block.
multiplyBlock.Complete();
await subtractBlock.Completion;

Discussion
Once linked, data will flow automatically from the source block to the target block. The
PropagateCompletion option flows completion in addition to data; however, at each
step in the pipeline, a faulting block will propagate its exception to the next block wrap‐
ped in an AggregateException. So, if you have a long pipeline that propagates
completions, the original error may be nested within multiple AggregateException
instances. AggregateException has several members, such as Flatten, that assist with
error handling in this situation.

It is possible to link dataflow blocks in many ways; you can have forks and joins, and
even loops in your mesh. However, the simple, linear pipeline is sufficient for most
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scenarios. This book will mainly deal with pipelines (and briefly cover forks); more
advanced scenarios are beyond the scope of this book.

The DataflowLinkOptions type gives you several different options you can set on a link
(such as the PropagateCompletion option we used above), and the LinkTo overload
can also take a predicate that you can use to filter which data can go over a link. If data
does not pass the filter, it is not dropped. Data that passes the filter travels over that link;
data that does not pass the filter attempts to pass over an alternate link, and stays in the
block if there is no other link for it to take.

See Also
Recipe 4.2 covers propagating errors along links.

Recipe 4.3 covers removing links between blocks.

Recipe 7.7 covers how to link dataflow blocks to Rx observable streams.

4.2. Propagating Errors
Problem
You need a way to respond to errors that can happen in your dataflow mesh.

Solution
If a delegate passed to a dataflow block throws an exception, then that block will enter
a faulted state. When a block is in a faulted state, it will drop all of its data (and stop
accepting new data). The block in this code will never produce any output data; the first
value raises an exception, and the second value is just dropped:

var block = new TransformBlock<int, int>(item =>
{
    if (item == 1)
        throw new InvalidOperationException("Blech.");
    return item * 2;
});
block.Post(1);
block.Post(2);

To catch exceptions from a dataflow block, await its Completion property. The Comple
tion property returns a Task that will complete when the block is completed, and if the
block faults, the Completion task is also faulted:

try
{
    var block = new TransformBlock<int, int>(item =>
    {

4.2. Propagating Errors | 47



        if (item == 1)
            throw new InvalidOperationException("Blech.");
        return item * 2;
    });
    block.Post(1);
    await block.Completion;
}
catch (InvalidOperationException)
{
    // The exception is caught here.
}

When you propagate completion using the PropagateCompletion link option, errors
are also propagated. However, the exception is passed to the next block wrapped in an
AggregateException. This example catches the exception from the end of a pipeline,
so it would catch AggregateException if an exception was propagated from earlier
blocks:

try
{
    var multiplyBlock = new TransformBlock<int, int>(item =>
    {
        if (item == 1)
            throw new InvalidOperationException("Blech.");
        return item * 2;
    });
    var subtractBlock = new TransformBlock<int, int>(item => item - 2);
    multiplyBlock.LinkTo(subtractBlock,
        new DataflowLinkOptions { PropagateCompletion = true });
    multiplyBlock.Post(1);
    await subtractBlock.Completion;
}
catch (AggregateException)
{
    // The exception is caught here.
}

Each block wraps incoming errors in an AggregateException, even if the incoming
error is already an AggregateException. If an error occurs early in a pipeline and travels
down several links before it is observed, the original error will be wrapped in multiple
layers of AggregateException. The AggregateException.Flatten method simplifies
error handling in this scenario.

Discussion
When you build your mesh (or pipeline), consider how errors should be handled. In
simpler situations, it can be best to just propagate the errors and catch them once at the
end. In more complex meshes, you may need to observe each block when the dataflow
has completed.
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See Also
Recipe 4.1 covers establishing links between blocks.

Recipe 4.3 covers breaking links between blocks.

4.3. Unlinking Blocks
Problem
During processing, you need to dynamically change the structure of your dataflow. This
is an advanced scenario and is hardly ever needed.

Solution
You can link or unlink dataflow blocks at any time; data can be freely passing through
the mesh and it is still safe to link or unlink at any time. Both linking and unlinking are
fully threadsafe.

When you create a dataflow block link, keep the IDisposable returned by the LinkTo
method, and dispose of it when you want to unlink the blocks:

var multiplyBlock = new TransformBlock<int, int>(item => item * 2);
var subtractBlock = new TransformBlock<int, int>(item => item - 2);

IDisposable link = multiplyBlock.LinkTo(subtractBlock);
multiplyBlock.Post(1);
multiplyBlock.Post(2);

// Unlink the blocks.
// The data posted above may or may not have already gone through the link.
// In real-world code, consider a using block rather than calling Dispose.
link.Dispose();

Discussion
Unless you can guarantee that the link is idle, there will be race conditions when you
unlink it. However, these race conditions are usually not a concern; data will either flow
over the link before the link is broken, or it will not. There are no race conditions that
would cause duplication or loss of data.

Unlinking is an advanced scenario, but it can be useful in a handful of situations. As
one example, there is no way to change the filter for a link. To change the filter on an
existing link, you would have to unlink the old one and create a new link with the new
filter (optionally setting DataflowLinkOptions.Append to false). As another example,
unlinking at a strategic point can be used to pause a dataflow mesh.
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See Also
Recipe 4.1 covers establishing links between blocks.

4.4. Throttling Blocks
Problem
You have a fork scenario in your dataflow mesh and want the data to flow in a load-
balancing way.

Solution
By default, when a block produces output data, it will examine all of its links (in the
order they were created) and attempt to flow the data down each link one at a time.
Also, by default, each block will maintain an input buffer and accept any amount of data
before it is ready to process it.

This causes a problem in a fork scenario where one source block is linked to two target
blocks: the first target block would always buffer the data, and the second target block
would never get a chance to get any. This can be fixed by throttling the target blocks
using the BoundedCapacity block option. By default, BoundedCapacity is set to Data
flowBlockOptions.Unbounded, which causes the first target block to buffer all the data
even if it is not ready to process it yet.

BoundedCapacity can be set to any value greater than zero (or DataflowBlockOp
tions.Unbounded, of course). As long as the target blocks can keep up with the data
coming from the source blocks, a simple value of 1 will suffice:

var sourceBlock = new BufferBlock<int>();
var options = new DataflowBlockOptions { BoundedCapacity = 1 };
var targetBlockA = new BufferBlock<int>(options);
var targetBlockB = new BufferBlock<int>(options);

sourceBlock.LinkTo(targetBlockA);
sourceBlock.LinkTo(targetBlockB);

Discussion
Throttling is useful for load balancing in fork scenarios, but it can be used anywhere
else you want throttling behavior. For example, if you are populating your dataflow mesh
with data from an I/O operation, you can apply BoundedCapacity to the blocks in your
mesh. This way, you won’t read too much I/O data until your mesh is ready for it, and
your mesh won’t end up buffering all the input data before it is able to process it.
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See Also
Recipe 4.1 covers linking blocks together.

4.5. Parallel Processing with Dataflow Blocks
Problem
You want some parallel processing done within your dataflow mesh.

Solution
By default, each dataflow block is independent from each other block. When you link
two blocks together, they will process independently. So, every dataflow mesh has some
natural parallelism built in.

If you need to go beyond this—say, if you have one particular block that does heavy
CPU computations—then you can instruct that block to operate in parallel on its input
data by setting the MaxDegreeOfParallelism option. By default, MaxDegreeOfParal
lelism is set to 1, so each dataflow block will only process one piece of data at a time.

BoundedCapacity can be set to DataflowBlockOptions.Unbounded or any value greater
than zero. The following example permits any number of tasks to be multiplying data
simultaneously:

var multiplyBlock = new TransformBlock<int, int>(
    item => item * 2,
    new ExecutionDataflowBlockOptions
    {
        MaxDegreeOfParallelism = DataflowBlockOptions.Unbounded
    }
);
var subtractBlock = new TransformBlock<int, int>(item => item - 2);
multiplyBlock.LinkTo(subtractBlock);

Discussion
The MaxDegreeOfParallelism option makes parallel processing within a block easy to
do. What is not so easy is determining which blocks need it. One technique is to pause
dataflow execution in the debugger, where you can see the number of data items queued
up (that have not yet been processed by the block). This can be an indication that some
restructuring or parallelization would be helpful.

MaxDegreeOfParallelism also works if the dataflow block does asynchronous pro‐
cessing. In this case, the MaxDegreeOfParallelism option specifies the level of concur‐
rency—a certain number of slots. Each data item takes up a slot when the block begins
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processing it, and only leaves that slot when the asynchronous processing is fully com‐
pleted.

See Also
Recipe 4.1 covers linking blocks together.

4.6. Creating Custom Blocks
Problem
You have some reusable logic that you wish to place into a custom dataflow block. This
enables you to create larger blocks that contain complex logic.

Solution
You can cut out any part of a dataflow mesh that has a single input and output block by
using the Encapsulate method. Encapsulate will create a single block out of the two
endpoints. Propagating data and completion between those endpoints is your respon‐
sibility. The following code creates a custom dataflow block out of two blocks, propa‐
gating data and completion:

IPropagatorBlock<int, int> CreateMyCustomBlock()
{
    var multiplyBlock = new TransformBlock<int, int>(item => item * 2);
    var addBlock = new TransformBlock<int, int>(item => item + 2);
    var divideBlock = new TransformBlock<int, int>(item => item / 2);

    var flowCompletion = new DataflowLinkOptions { PropagateCompletion = true };
    multiplyBlock.LinkTo(addBlock, flowCompletion);
    addBlock.LinkTo(divideBlock, flowCompletion);

    return DataflowBlock.Encapsulate(multiplyBlock, divideBlock);
}

Discussion
When you encapsulate a mesh into a custom block, consider what kind of options you
want to expose to your users. Consider how each block option should (or should not)
be passed on to your inner mesh; in many cases, some block options don’t apply or don’t
make sense. For this reason, it’s common for custom blocks to define their own custom
options instead of accepting a DataflowBlockOptions parameter.

DataflowBlock.Encapsulate will only encapsulate a mesh with one input block and
one output block. If you have a reusable mesh with multiple inputs and/or outputs, you
should encapsulate it within a custom object and expose the inputs and outputs as
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properties of type ITargetBlock<T> (for inputs) and IReceivableSourceBlock<T> (for
outputs).

The previous examples all use Encapsulate to create a custom block. It is also possible
to implement the dataflow interfaces yourself, but it’s much more difficult. Microsoft
has a paper that describes advanced techniques for creating your own custom dataflow
blocks.

See Also
Recipe 4.1 covers linking blocks together.

Recipe 4.2 covers propagating errors along block links. 
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CHAPTER 5

Rx Basics

LINQ is a set of language features that enable developers to query sequences. The two
most common LINQ providers are the built-in LINQ to Objects (based on IEnumera
ble<T>) and LINQ to Entities (based on IQueryable<T>). There are many other pro‐
viders available, and most providers have the same general structure. Queries are lazily
evaluated, and the sequences produce values as necessary. Conceptually, this is a pull
model; during evaluation, value items are pulled from the query one at a time.

Reactive Extensions (Rx) treats events as sequences of data that arrive over time. As
such, you can think of Rx as LINQ to events (based on IObservable<T>). The main
difference between observables and other LINQ providers is that Rx is a “push” model.
This means that the query defines how the program reacts as events arrive. Rx builds
on top of LINQ, adding some powerful new operators as extension methods.

In this chapter, we’ll look at some of the more common Rx operations. Bear in mind
that all of the LINQ operators are also available, so simple operations, such as filtering
(Where) and projection (Select), work conceptually the same as they do with any other
LINQ provider. This chapter will not cover these common LINQ operations; it focuses
on the new capabilities that Rx builds on top of LINQ, particularly those dealing with
time.

To use Rx, install the NuGet package Rx-Main into your application. Reactive Extensions
has wide platform support (Table 5-1):

Table 5-1. Platform support for Reactive Extensions
Platform Rx support

.NET 4.5

.NET 4.0

Mono iOS/Droid

Windows Store
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Platform Rx support

Windows Phone Apps 8.1

Windows Phone SL 8.0

Windows Phone SL 7.1

Silverlight 5

5.1. Converting .NET Events
Problem
You have an event that you need to treat as an Rx input stream, producing some data
via OnNext each time the event is raised.

Solution
The Observable class defines several event converters. Most .NET framework events
are compatible with FromEventPattern, but if you have events that don’t follow the
common pattern, you can use FromEvent instead.

FromEventPattern works best if the event delegate type is EventHandler<T>. Many
newer framework types use this delegate type for events. For example, the Pro
gress<T> type defines a ProgressChanged event, which is of type EventHandler<T>, so
it can be easily wrapped with FromEventPattern:

var progress = new Progress<int>();
var progressReports = Observable.FromEventPattern<int>(
    handler => progress.ProgressChanged += handler,
    handler => progress.ProgressChanged -= handler);
progressReports.Subscribe(data => Trace.WriteLine("OnNext: " + data.EventArgs));

Note that the data.EventArgs is strongly typed to be an int. The type argument to
FromEventPattern (int in the previous example) is the same as the type T in EventHan
dler<T>. The two lambda arguments to FromEventPattern enable Rx to subscribe and
unsubscribe from the event.

Newer UI frameworks use EventHandler<T> and can easily be used with FromEvent
Pattern, but older types often define a unique delegate type for each event. These can
also be used with FromEventPattern, but it takes a bit more work. For example, the
System.Timers.Timer type defines an Elapsed event, which is of type ElapsedEven
tHandler. You can wrap older events like this with FromEventPattern as such:

var timer = new System.Timers.Timer(interval: 1000) { Enabled = true };
var ticks = Observable.FromEventPattern<ElapsedEventHandler, ElapsedEventArgs>(
    handler => (s, a) => handler(s, a),
    handler => timer.Elapsed += handler,
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    handler => timer.Elapsed -= handler);
ticks.Subscribe(data => Trace.WriteLine("OnNext: " + data.EventArgs.SignalTime));

Note that data.EventArgs is still strongly typed. The type arguments to FromEventPat
tern are now the unique handler type and the derived EventArgs type. The first lambda
argument to FromEventPattern is a converter from EventHandler<ElapsedEven
tArgs> to ElapsedEventHandler; the converter should do nothing more than pass along
the event.

That syntax is definitely getting awkward. There is another option, which uses reflection:

var timer = new System.Timers.Timer(interval: 1000) { Enabled = true };
var ticks = Observable.FromEventPattern(timer, "Elapsed");
ticks.Subscribe(data => Trace.WriteLine("OnNext: "
    + ((ElapsedEventArgs)data.EventArgs).SignalTime));

With this approach, the call to FromEventPattern is much easier. However, there are
some drawbacks to this approach: there is a magic string ("Elapsed"), and the consumer
does not get strongly typed data. That is, data.EventArgs is of type object, so you have
to cast it to ElapsedEventArgs yourself.

Discussion
Events are a common source of data for Rx streams. This recipe covers wrapping any
events that conform to the standard event pattern (where the first argument is the sender
and the second argument is the event arguments type). If you have unusual event types,
you can still use the Observable.FromEvent method overloads to wrap them into an
observable.

When events are wrapped into an observable, OnNext is called each time the event is
raised. This can cause surprising behavior when you’re dealing with AsyncCompletedE
ventArgs, because any exception is passed along as data (OnNext), not as an error
(OnError). Consider this example wrapper for WebClient.DownloadStringCompleted:

var client = new WebClient();
var downloadedStrings = Observable.FromEventPattern(client,
    "DownloadStringCompleted");
downloadedStrings.Subscribe(
    data =>
    {
        var eventArgs = (DownloadStringCompletedEventArgs)data.EventArgs;
        if (eventArgs.Error != null)
            Trace.WriteLine("OnNext: (Error) " + eventArgs.Error);
        else
            Trace.WriteLine("OnNext: " + eventArgs.Result);
    },
    ex => Trace.WriteLine("OnError: " + ex.ToString()),
    () => Trace.WriteLine("OnCompleted"));
client.DownloadStringAsync(new Uri("http://invalid.example.com/"));
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When WebClient.DownloadStringAsync completes with an error, the event is raised
with an exception in AsyncCompletedEventArgs.Error. Unfortunately, Rx sees this as
a data event, so if you run this you’ll see “OnNext: (Error)” printed instead of “OnError:.”

Some event subscriptions and unsubscriptions must be done from a particular con‐
text. For example, events on many UI controls must be subscribed to from the UI thread.
Rx provides an operator will control the context for subscribing and unsubscribing:
SubscribeOn. This operator that is not necessary in most situations because most of the
time a UI-based subscription is done from the UI thread.

See Also
Recipe 5.2 covers how to change the context in which events are raised.

Recipe 5.4 covers how to throttle events so subscribers are not overwhelmed.

5.2. Sending Notifications to a Context
Problem
Rx does its best to be thread agnostic. So, it will raise its notifications (e.g., OnNext) in
whatever thread happens to be present at the time.

However, you often want these notifications raised in a particular context. For example,
UI elements should only be manipulated from the UI thread that owns them, so if you
are updating a UI in response to a notification, then you’ll need to “move” over to the
UI thread.

Solution
Rx provides the ObserveOn operator to move notifications to another scheduler.

Consider this example, which uses the Interval operator to create OnNext notifications
once a second:

private void Button_Click(object sender, RoutedEventArgs e)
{
    Trace.WriteLine("UI thread is " + Environment.CurrentManagedThreadId);
    Observable.Interval(TimeSpan.FromSeconds(1))
        .Subscribe(x => Trace.WriteLine("Interval " + x + " on thread " +
            Environment.CurrentManagedThreadId));
}

On my machine, the output looks like this:

UI thread is 9
Interval 0 on thread 10
Interval 1 on thread 10
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Interval 2 on thread 11
Interval 3 on thread 11
Interval 4 on thread 10
Interval 5 on thread 11
Interval 6 on thread 11

Since Interval is based on a timer (without a specific thread), the notifications are
raised on a thread-pool thread, rather than the UI thread. If we need to update a UI
element, we can pipe those notifications through ObserveOn and pass a synchronization
context representing the UI thread:

private void Button_Click(object sender, RoutedEventArgs e)
{
    var uiContext = SynchronizationContext.Current;
    Trace.WriteLine("UI thread is " + Environment.CurrentManagedThreadId);
    Observable.Interval(TimeSpan.FromSeconds(1))
        .ObserveOn(uiContext)
        .Subscribe(x => Trace.WriteLine("Interval " + x + " on thread " +
            Environment.CurrentManagedThreadId));
}

Another common usage of ObserveOn is to move off the UI thread when necessary. Let’s
say we have a situation where we need to do some CPU-intensive computation whenever
the mouse moves. By default, all mouse move events are raised on the UI thread, so we
can use ObserveOn to move those notifications to a thread-pool thread, do the compu‐
tation, and then move the result notifications back to the UI thread:

private void Button_Click(object sender, RoutedEventArgs e)
{
    var uiContext = SynchronizationContext.Current;
    Trace.WriteLine("UI thread is " + Environment.CurrentManagedThreadId);
    Observable.FromEventPattern<MouseEventHandler, MouseEventArgs>(
            handler => (s, a) => handler(s, a),
            handler => MouseMove += handler,
            handler => MouseMove -= handler)
        .Select(evt => evt.EventArgs.GetPosition(this))
        .ObserveOn(Scheduler.Default)
        .Select(position =>
        {
            // Complex calculation
            Thread.Sleep(100);
            var result = position.X + position.Y;
            Trace.WriteLine("Calculated result " + result + " on thread " +
                Environment.CurrentManagedThreadId);
            return result;
        })
        .ObserveOn(uiContext)
        .Subscribe(x => Trace.WriteLine("Result " + x + " on thread " +
            Environment.CurrentManagedThreadId));
}
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If you execute this sample, you’ll see the calculations done on a thread-pool thread and
the results printed on the UI thread. However, you’ll also notice that the calculations
and results will lag behind the input; they’ll queue up because the mouse move updates
more often than every 100 ms. Rx has several techniques for handling this situation;
one common one covered in Recipe 5.4 is throttling the input.

Discussion
ObserveOn actually moves notifications to an Rx scheduler. This recipe covered the
default (thread pool) scheduler and one way of creating a UI scheduler. The most com‐
mon uses for the ObserveOn operator are moving on or off the UI thread, but schedulers
are useful in other scenarios. We’ll take another look at schedulers when we do some
advanced testing in Recipe 6.6.

See Also
Recipe 5.1 covers how to create sequences from events.

Recipe 5.4 covers throttling event streams.

Recipe 6.6 covers the special scheduler used for testing your Rx code.

5.3. Grouping Event Data with Windows and Buffers
Problem
You have a sequence of events and you want to group the incoming events as they
arrive. For one example, you need to react to pairs of inputs. For another example, you
need to react to all inputs within a two-second window.

Solution
Rx provides a pair of operators that group incoming sequences: Buffer and Window.
Buffer will hold on to the incoming events until the group is complete, at which time
it forwards them all at once as a collection of events. Window will logically group the
incoming events but will pass them along as they arrive. The return type of Buffer is
IObservable<IList<T>> (an event stream of collections); the return type of Window is
IObservable<IObservable<T>> (an event stream of event streams).

This example uses the Interval operator to create OnNext notifications once a second
and then buffers them two at a time:

private void Button_Click(object sender, RoutedEventArgs e)
{
    Observable.Interval(TimeSpan.FromSeconds(1))
        .Buffer(2)
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        .Subscribe(x => Trace.WriteLine(
            DateTime.Now.Second + ": Got " + x[0] + " and " + x[1]));
}

On my machine, this produces a pair of outputs every two seconds:

13: Got 0 and 1
15: Got 2 and 3
17: Got 4 and 5
19: Got 6 and 7
21: Got 8 and 9

The following is a similar example using Window to create groups of two events:

private void Button_Click(object sender, RoutedEventArgs e)
{
    Observable.Interval(TimeSpan.FromSeconds(1))
        .Window(2)
        .Subscribe(group =>
        {
            Trace.WriteLine(DateTime.Now.Second + ": Starting new group");
            group.Subscribe(
                x => Trace.WriteLine(DateTime.Now.Second + ": Saw " + x),
                () => Trace.WriteLine(DateTime.Now.Second + ": Ending group"));
        });
}

On my machine, this Window example produces output like this:

17: Starting new group
18: Saw 0
19: Saw 1
19: Ending group
19: Starting new group
20: Saw 2
21: Saw 3
21: Ending group
21: Starting new group
22: Saw 4
23: Saw 5
23: Ending group
23: Starting new group

These examples illustrate the difference between Buffer and Window. Buffer waits for
all the events in its group and then publishes a single collection. Window groups events
the same way, but publishes the events as they come in.

Both Buffer and Window also work with time spans. This is an example where all mouse
move events are collected in windows of one second:

private void Button_Click(object sender, RoutedEventArgs e)
{
    Observable.FromEventPattern<MouseEventHandler, MouseEventArgs>(
            handler => (s, a) => handler(s, a),
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            handler => MouseMove += handler,
            handler => MouseMove -= handler)
        .Buffer(TimeSpan.FromSeconds(1))
        .Subscribe(x => Trace.WriteLine(
            DateTime.Now.Second + ": Saw " + x.Count + " items."));
}

Depending on how you move the mouse, you should see output like this:

49: Saw 93 items.
50: Saw 98 items.
51: Saw 39 items.
52: Saw 0 items.
53: Saw 4 items.
54: Saw 0 items.
55: Saw 58 items.

Discussion
Buffer and Window are some of the tools we have for taming input and shaping it the
way we want it to look. Another useful technique is throttling, which we’ll look at in
Recipe 5.4.

Both Buffer and Window have other overloads that can be used in more advanced sce‐
narios. The overloads with skip and timeShift parameters allow you to create groups
that overlap other groups or skip elements in between groups. There are also overloads
that take delegates, which allow you to dynamically define the boundary of the groups.

See Also
Recipe 5.1 covers how to create sequences from events.

Recipe 5.4 covers throttling event streams.

5.4. Taming Event Streams with Throttling and Sampling
Problem
A common problem with writing reactive code is when the events come in too quickly.
A fast-moving stream of events can overwhelm your program’s processing.

Solution
Rx provides operators specifically for dealing with a flood of event data. The Throt
tle and Sample operators give us two different ways to tame fast input events.
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The Throttle operator establishes a sliding timeout window. When an incoming event
arrives, it resets the timeout window. When the timeout window expires, it publishes
the last event value that arrived within the window.

This example monitors mouse movements but uses Throttle to only report updates
once the mouse has stayed still for a full second:

private void Button_Click(object sender, RoutedEventArgs e)
{
    Observable.FromEventPattern<MouseEventHandler, MouseEventArgs>(
            handler => (s, a) => handler(s, a),
            handler => MouseMove += handler,
            handler => MouseMove -= handler)
        .Select(x => x.EventArgs.GetPosition(this))
        .Throttle(TimeSpan.FromSeconds(1))
        .Subscribe(x => Trace.WriteLine(
            DateTime.Now.Second + ": Saw " + (x.X + x.Y)));
}

The output varies considerably based on mouse movement, but one example run on
my machine looked like this:

47: Saw 139
49: Saw 137
51: Saw 424
56: Saw 226

Throttle is often used in situations such as autocomplete, when the user is typing text
into a textbox, but you don’t want to do the actual lookup until the user stops typing.

Sample takes a different approach to taming fast-moving sequences. Sample establishes
a regular timeout period and publishes the most recent value within that window each
time the timeout expires. If there were no values received within the sample period,
then no results are published for that period.

The following example captures mouse movements and samples them in one-second
intervals. Unlike the Throttle example, the Sample example does not require you to
hold the mouse still to see data.

private void Button_Click(object sender, RoutedEventArgs e)
{
    Observable.FromEventPattern<MouseEventHandler, MouseEventArgs>(
            handler => (s, a) => handler(s, a),
            handler => MouseMove += handler,
            handler => MouseMove -= handler)
        .Select(x => x.EventArgs.GetPosition(this))
        .Sample(TimeSpan.FromSeconds(1))
        .Subscribe(x => Trace.WriteLine(
            DateTime.Now.Second + ": Saw " + (x.X + x.Y)));
}
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Here’s the output on my machine when I first left the mouse still for a few seconds and
then continuously moved it:

12: Saw 311
17: Saw 254
18: Saw 269
19: Saw 342
20: Saw 224
21: Saw 277

Discussion
Throttling and sampling are essential tools for taming the flood of input. Don’t forget
that you can also easily do filtering with the standard LINQ Where operator. You can
think of the Throttle and Sample operators as similar to Where, only they filter on time
windows instead of filtering on event data. All three of these operators help you tame
fast-moving input streams in different ways.

See Also
Recipe 5.1 covers how to create sequences from events.

Recipe 5.2 covers how to change the context in which events are raised.

5.5. Timeouts
Problem
You expect an event to arrive within a certain time and need to ensure that your program
will respond in a timely fashion, even if the event does not arrive. Most commonly, this
kind of expected event is a single asynchronous operation (e.g., expecting the response
from a web service request).

Solution
The Timeout operator establishes a sliding timeout window on its input stream. When‐
ever a new event arrives, the timeout window is reset. If the timeout expires without
seeing an event in that window, the Timeout operator will end the stream with an
OnError notification containing a TimeoutException.

This example issues a web request for the example domain and applies a timeout of one
second:

private void Button_Click(object sender, RoutedEventArgs e)
{
    var client = new HttpClient();
    client.GetStringAsync("http://www.example.com/").ToObservable()

64 | Chapter 5: Rx Basics



        .Timeout(TimeSpan.FromSeconds(1))
        .Subscribe(
            x => Trace.WriteLine(DateTime.Now.Second + ": Saw " + x.Length),
            ex => Trace.WriteLine(ex));
}

Timeout is ideal for asynchronous operations, such as web requests, but it can be applied
to any event stream. The following example applies Timeout to mouse move events,
which are easier to play around with:

private void Button_Click(object sender, RoutedEventArgs e)
{
    Observable.FromEventPattern<MouseEventHandler, MouseEventArgs>(
            handler => (s, a) => handler(s, a),
            handler => MouseMove += handler,
            handler => MouseMove -= handler)
        .Select(x => x.EventArgs.GetPosition(this))
        .Timeout(TimeSpan.FromSeconds(1))
        .Subscribe(
            x => Trace.WriteLine(DateTime.Now.Second + ": Saw " + (x.X + x.Y)),
            ex => Trace.WriteLine(ex));
}

On my machine, I moved the mouse a bit and then let it sit still for a second, and got
these results:

16: Saw 180
16: Saw 178
16: Saw 177
16: Saw 176
System.TimeoutException: The operation has timed out.

Note that once the TimeoutException is sent to OnError, the stream is finished. No
more mouse move events come through. You may not want exactly this behavior, so the
Timeout operator has overloads that substitute a second stream when the timeout occurs
instead of ending the stream with an exception.

This example observes mouse moves until there is a timeout and then switches to ob‐
serving mouse clicks:

private void Button_Click(object sender, RoutedEventArgs e)
{
    var clicks = Observable.FromEventPattern
        <MouseButtonEventHandler, MouseButtonEventArgs>(
            handler => (s, a) => handler(s, a),
            handler => MouseDown += handler,
            handler => MouseDown -= handler)
        .Select(x => x.EventArgs.GetPosition(this));

    Observable.FromEventPattern<MouseEventHandler, MouseEventArgs>(
            handler => (s, a) => handler(s, a),
            handler => MouseMove += handler,
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            handler => MouseMove -= handler)
        .Select(x => x.EventArgs.GetPosition(this))
        .Timeout(TimeSpan.FromSeconds(1), clicks)
        .Subscribe(
            x => Trace.WriteLine(
                DateTime.Now.Second + ": Saw " + x.X + "," + x.Y),
            ex => Trace.WriteLine(ex));
}

On my machine, I moved the mouse a bit, then held it still for a second, and then clicked
on a couple different points. The output is below, showing the mouse-move events
quickly moving through until the timout, and then the two click events:

49: Saw 95,39
49: Saw 94,39
49: Saw 94,38
49: Saw 94,37
53: Saw 130,141
55: Saw 469,4

Discussion
Timeout is an essential operator in nontrivial applications because you always want your
program to be responsive even if the rest of the world is not. It’s particularly useful when
you have asynchronous operations, but it can be applied to any event stream. Note that
the underlying operation is not actually canceled; in the case of a timeout, the operation
will continue executing until it succeeds or fails.

See Also
Recipe 5.1 covers how to create sequences from events.

Recipe 7.6 covers wrapping asynchronous code as an observable event stream.

Recipe 9.6 covers unsubscribing from sequences as a result of a CancellationToken.

Recipe 9.3 covers using a CancellationToken as a timeout. 

66 | Chapter 5: Rx Basics



CHAPTER 6

Testing

Testing is an essential part of software quality. Unit testing advocates in particular have
become common in the last few years; it seems that you read or hear about it everywhere.
Some promote test-driven development, which is a style of coding that ensures you have
comprehensive tests when the application is complete. The benefits of unit testing on
code quality and overall time to completion are well known, and yet (at the time of
writing) most developers do not actually write unit tests.

I encourage you to write at least some unit tests, and start with the code where you feel
the least confidence. In my personal experience, unit tests have given me two main
advantages:

1. Better understanding of the code. You know that part of the application that works
but you have no idea how? It’s always kind of in the back of your mind when the
really weird bug reports come in. Writing unit tests for the “hard” code is a great
way to get a clear understanding of how it works. After writing unit tests describing
its behavior, the code is no longer mysterious; you end up with a set of unit tests
that describe its behavior as well as the dependencies that code has on the rest of
the code.

2. Greater confidence to make changes. Sooner or later, you’ll get that feature request
that requires you to change the “scary” code, and you’ll no longer be able to pretend
it isn’t there (I know how that feels; I’ve been there!). It’s best to be proactive: write
the unit tests for the scary code before the feature request comes in; do it now rather
than later. Once your unit tests are complete, you’ll have an early warning system
that will alert you immediately if your changes break existing behavior.

Both of these advantages apply to your own code just as much as others’ code. I’m sure
there are other advantages, too. Does unit testing decrease the frequency of bugs? Most
likely. Does unit testing reduce the overall time on a project? Possibly. But the advantages
I describe above are defininte; I experience them every time I write unit tests.
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So, that’s my sales pitch for unit testing.

This chapter contains recipes that are all about testing. A lot of developers (even ones
who normally write unit tests) shy away from testing concurrent code because they
assume it’s hard. However, as these recipes will show, unit testing concurrent code is not
as difficult as they think. Modern features and libraries, such as async and Rx, have put
a lot of thought into testing, and it shows. I encourage you to use these recipes to write
unit tests, especially if you’re new to concurrency (i.e., the new concurrent code is “hard”
and/or “scary”).

6.1. Unit Testing async Methods
Problem
You have an async method that you need to unit test.

Solution
Most modern unit test frameworks support async Task unit test methods, including
MSTest, NUnit, and xUnit. MSTest began support for these tests with Visual Studio
2012. If you use another unit test framework, you may have to upgrade to the latest
version.

Here is an example of an async MSTest unit test:

[TestMethod]
public async Task MyMethodAsync_ReturnsFalse()
{
  var objectUnderTest = ...;
  bool result = await objectUnderTest.MyMethodAsync();
  Assert.IsFalse(result);
}

The unit test framework will notice that the return type of the method is Task and will
intelligently wait for the task to complete before marking the test “successful” or “failed.”

If your unit test framework does not support async Task unit tests, then it will need
some help to wait for the asynchronous operation under test. One option is to use
Task.Wait and unwrap the AggregateException if there is an error. I prefer to use the
AsyncContext type from the Nito.AsyncEx NuGet package:

[TestMethod]
public void MyMethodAsync_ReturnsFalse()
{
  AsyncContext.Run(async () =>
  {
    var objectUnderTest = ...;
    bool result = await objectUnderTest.MyMethodAsync();
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    Assert.IsFalse(result);
  });
}

AsyncContext.Run will wait until all asynchronous methods complete.

Discussion
Mocking asynchronous dependencies can be a bit awkward at first. It’s a good idea to
at least test how your methods respond to synchronous success (mocking with
Task.FromResult), synchronous errors (mocking with TaskCompletionSource<T>),
and asynchronous success (mocking with Task.Yield and a return value).

When testing asynchronous code, deadlocks and race conditions may surface more
often than when testing synchronous code. I find the per-test timeout setting useful; in
Visual Studio, you can add a test settings file to your solution that allows you to set
individual test timeouts. The default value is quite high; I usually have a per-test timeout
setting of two seconds.

The AsyncContext type is in the Nito.AsyncEx NuGet package.

See Also
Recipe 6.2 covers unit testing asynchronous methods expected to fail.

6.2. Unit Testing async Methods Expected to Fail
Problem
You need to write a unit test that checks for a specific failure of an async Task method.

Solution
If you’re doing desktop or server development, MSTest does support failure testing via
the regular ExpectedExceptionAttribute:

// Not a recommended solution; see below.
[TestMethod]
[ExpectedException(typeof(DivideByZeroException))]
public async Task Divide_WhenDenominatorIsZero_ThrowsDivideByZero()
{
  await MyClass.DivideAsync(4, 0);
}
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However, this solution is not the best solution. For one thing, Windows Store applica‐
tions do not have ExpectedException available for their unit tests. Another more phil‐
osophical problem is that ExpectedException is actually a poor design. The exception
it expects may be thrown by any of the methods called by your unit test method. A better
design checks that a particular piece of code throws that exception, not the unit test as
a whole.

Microsoft has moved in this direction by removing ExpectedException from Windows
Store unit tests, replacing it with Assert.ThrowsException<TException>. You can use
it like this:

[TestMethod]
public async Task Divide_WhenDenominatorIsZero_ThrowsDivideByZero()
{
  await Assert.ThrowsException<DivideByZeroException>(async () =>
  {
    await MyClass.DivideAsync(4, 0);
  });
}

Do not forget to await the task returned by ThrowsException! This
will propagate any assertion failures that it detects. If you forget the
await and ignore the compiler warning, your unit test will always
silently succeed regardless of your method’s behavior.

Unfortunately, Microsoft only added ThrowsException to Windows Store unit test
projects, and (as of this writing) several other unit test frameworks do not include an
equivalent async-compatible ThrowsException. If you find yourself in this boat, you
can create your own:

/// <summary>
/// Ensures that an asynchronous delegate throws an exception.
/// </summary>
/// <typeparam name="TException">
/// The type of exception to expect.
/// </typeparam>
/// <param name="action">The asynchronous delegate to test.</param>
/// <param name="allowDerivedTypes">
/// Whether derived types should be accepted.
/// </param>
public static async Task ThrowsExceptionAsync<TException>(Func<Task> action,
    bool allowDerivedTypes = true)
{
    try
    {
        await action();
        Assert.Fail("Delegate did not throw expected exception " +
            typeof(TException).Name + ".");
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    }
    catch (Exception ex)
    {
        if (allowDerivedTypes && !(ex is TException))
            Assert.Fail("Delegate threw exception of type " + ex.GetType().Name +
                ", but " + typeof(TException).Name +
                " or a derived type was expected.");
        if (!allowDerivedTypes && ex.GetType() != typeof(TException))
            Assert.Fail("Delegate threw exception of type " + ex.GetType().Name +
                ", but " + typeof(TException).Name + " was expected.");
    }
}

You can use the method just like the Windows Store MSTest Assert.ThrowsExcep
tion<TException> method. Don’t forget to await the return value!

Discussion
Testing error handling is just as important as testing the successful scenarios. Some
would even say more important, since the successful scenario is the one that everyone
tries before the software is released. If your application is going to behave strangely, it
will be due to an unexpected error situation.

However, I encourage developers to move away from ExpectedException. It’s better to
test for an exception thrown at a specific point rather than testing for an exception at
any time during the test. Instead of ExpectedException, use ThrowsException (or its
equivalent in your unit test framework), or use the ThrowsExceptionAsync implemen‐
tation above.

See Also
Recipe 6.1 covers the basics of unit testing asynchronous methods.

6.3. Unit Testing async void Methods
Problem
You have an async void method that you need to unit test.

Solution
Stop.

You should do your dead-level best to avoid this problem rather than solve it. If it is
possible to change your async void method to an async Task method, then do so.
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If your method must be async void (e.g., to satisfy an interface method signature), then
consider writing two methods: an async Task method that contains all the logic, and
an async void wrapper that just calls the async Task method and awaits the result.
The async void method satisfies the architecture requirements, while the async
Task method (with all the logic) is testable.

If it’s completely impossible to change your method and you absolutely must unit test
an async void method, then there is a way to do it. You can use the AsyncContext class
from the Nito.AsyncEx library:

// Not a recommended solution; see above.
[TestMethod]
public void MyMethodAsync_DoesNotThrow()
{
  AsyncContext.Run(() =>
  {
    var objectUnderTest = ...;
    objectUnderTest.MyMethodAsync();
  });
}

The AsyncContext type will wait until all asynchronous operations complete (including
async void methods) and will propagate exceptions that they raise.

The AsyncContext type is in the Nito.AsyncEx NuGet package.

Discussion
One of the key guidelines in async code is to avoid async void. I strongly recommend
you refactor your code instead of using AsyncContext for unit testing async void
methods.

See Also
Recipe 6.1 covers unit testing async Task methods.

6.4. Unit Testing Dataflow Meshes
Problem
You have a dataflow mesh in your application, and you need to verify it works correctly.
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Solution
Dataflow meshes are independent: they have a lifetime of their own and are asynchro‐
nous by nature. So, the most natural way to test them is with an asynchronous unit test.
The following unit test verifies the custom dataflow block from Recipe 4.6:

[TestMethod]
public async Task MyCustomBlock_AddsOneToDataItems()
{
    var myCustomBlock = CreateMyCustomBlock();

    myCustomBlock.Post(3);
    myCustomBlock.Post(13);
    myCustomBlock.Complete();

    Assert.AreEqual(4, myCustomBlock.Receive());
    Assert.AreEqual(14, myCustomBlock.Receive());
    await myCustomBlock.Completion;
}

Unit testing failures is not quite as straightforward, unfortunately. This is because ex‐
ceptions in dataflow meshes are wrapped in another AggregateException each time
they are propagated to the next block. The following example uses a helper method to
ensure that an exception will discard data and propagate through the custom block:

[TestMethod]
public async Task MyCustomBlock_Fault_DiscardsDataAndFaults()
{
    var myCustomBlock = CreateMyCustomBlock();

    myCustomBlock.Post(3);
    myCustomBlock.Post(13);
    myCustomBlock.Fault(new InvalidOperationException());

    try
    {
        await myCustomBlock.Completion;
    }
    catch (AggregateException ex)
    {
        AssertExceptionIs<InvalidOperationException>(
            ex.Flatten().InnerException, false);
    }
}

public static void AssertExceptionIs<TException>(Exception ex,
    bool allowDerivedTypes = true)
{
    if (allowDerivedTypes && !(ex is TException))
        Assert.Fail("Exception is of type " + ex.GetType().Name + ", but "
        + typeof(TException).Name + " or a derived type was expected.");
    if (!allowDerivedTypes && ex.GetType() != typeof(TException))
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        Assert.Fail("Exception is of type " + ex.GetType().Name + ", but "
        + typeof(TException).Name + " was expected.");
}

Discussion
Unit testing of dataflow meshes directly is doable, but somewhat awkward. If your mesh
is a part of a larger component, then you may find that it’s easier to just unit test the
larger component (implicitly testing the mesh). But if you’re developing a reusable cus‐
tom block or mesh, then unit tests like the preceding ones should be used.

See Also
Recipe 6.1 covers unit testing async methods.

6.5. Unit Testing Rx Observables
Problem
Part of your program is using IObservable<T>, and you need to find a way to unit test
it.

Solution
Reactive Extensions has a number of operators that produce sequences (e.g., Return)
and other operators that can convert a reactive sequence into a regular collection or
item (e.g., SingleAsync). We will use operators like Return to create stubs for observable
dependencies, and operators like SingleAsync to test the output.

Consider the following code, which takes an HTTP service as a dependency and applies
a timeout to the HTTP call:

public interface IHttpService
{
    IObservable<string> GetString(string url);
}

public class MyTimeoutClass
{
    private readonly IHttpService _httpService;

    public MyTimeoutClass(IHttpService httpService)
    {
        _httpService = httpService;
    }

    public IObservable<string> GetStringWithTimeout(string url)
    {
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        return _httpService.GetString(url)
            .Timeout(TimeSpan.FromSeconds(1));
    }
}

The code we wish to test is MyTimeoutClass, which consumes an observable dependency
and produces an observable as output.

The Return operator creates a cold sequence with a single element in it; we can use this
to build a simple stub. The SingleAsync operator returns a Task<T> that is completed
when the next event arrives. SingleAsync can be used for simple unit tests like this:

class SuccessHttpServiceStub : IHttpService
{
    public IObservable<string> GetString(string url)
    {
        return Observable.Return("stub");
    }
}

[TestMethod]
public async Task MyTimeoutClass_SuccessfulGet_ReturnsResult()
{
    var stub = new SuccessHttpServiceStub();
    var my = new MyTimeoutClass(stub);

    var result = await my.GetStringWithTimeout("http://www.example.com/")
        .SingleAsync();

    Assert.AreEqual("stub", result);
}

Another operator important in stub code is Throw, which returns an observable that
ends with an error. This allows us to unit test the error case as well. The following
example uses the ThrowsExceptionAsync helper from Recipe 6.2:

private class FailureHttpServiceStub : IHttpService
{
    public IObservable<string> GetString(string url)
    {
        return Observable.Throw<string>(new HttpRequestException());
    }
}

[TestMethod]
public async Task MyTimeoutClass_FailedGet_PropagatesFailure()
{
    var stub = new FailureHttpServiceStub();
    var my = new MyTimeoutClass(stub);

    await ThrowsExceptionAsync<HttpRequestException>(async () =>
    {
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        await my.GetStringWithTimeout("http://www.example.com/")
            .SingleAsync();
    });
}

Discussion
Return and Throw are great for creating observable stubs, and SingleAsync is an easy
way to test observables with async unit tests. They’re a good combination for simple
observables, but they don’t hold up well once you start dealing with time. For example,
if we wanted to test the timeout capability of MyTimeoutClass, the unit test would ac‐
tually have to wait for that amount of time. This doesn’t scale well as we add more unit
tests. In Recipe 6.6, we’ll look at a special way that Reactive Extensions allow us to stub
out time itself.

See Also
Recipe 6.1 covers unit testing async methods, which is very similar to unit tests that
await SingleAsync.

Recipe 6.6 covers unit testing observable sequences that depend on time passing.

6.6. Unit Testing Rx Observables with Faked Scheduling
Problem
You have an observable that is dependent on time, and want to write a unit test that is
not dependent on time. Observables that depend on time include ones that use timeouts,
windowing/buffering, and throttling/sampling. You want to unit test these but do not
want your unit tests to have excessive runtimes.

Solution
It’s certainly possible to put delays in your unit tests; however, there are two problems
with that approach: 1) the unit tests take a long time to run, and 2) there are race
conditions because the unit tests all run at the same time, making timing unpredictable.

The Rx library was designed with testing in mind; in fact, the Rx library itself is exten‐
sively unit tested. To enable this, Rx introduced a concept called a scheduler, and every
Rx operator that deals with time is implemented using this abstract scheduler.

To make your observables testable, you need to allow your caller to specify the scheduler.
For example, we can take the MyTimeoutClass from Recipe 6.5 and add a scheduler:

public interface IHttpService
{
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    IObservable<string> GetString(string url);
}

public class MyTimeoutClass
{
    private readonly IHttpService _httpService;

    public MyTimeoutClass(IHttpService httpService)
    {
        _httpService = httpService;
    }

    public IObservable<string> GetStringWithTimeout(string url,
        IScheduler scheduler = null)
    {
        return _httpService.GetString(url)
            .Timeout(TimeSpan.FromSeconds(1), scheduler ?? Scheduler.Default);
    }
}

Next, let’s modify our HTTP service stub so that it also understands scheduling, and
we’ll introduce a variable delay:

private class SuccessHttpServiceStub : IHttpService
{
    public IScheduler Scheduler { get; set; }
    public TimeSpan Delay { get; set; }

    public IObservable<string> GetString(string url)
    {
        return Observable.Return("stub")
            .Delay(Delay, Scheduler);
    }
}

Now you can use TestScheduler, a type included in the Rx library. TestScheduler gives
you powerful control over (virtual) time.

TestScheduler is in a separate NuGet package from the rest of Rx;
you’ll need to install the Rx-Testing NuGet package.

TestScheduler gives you complete control over time, but you often just need to set up
your code and then call TestScheduler.Start. Start will virtually advance time until
everything is done. A simple success test case could look like this:

[TestMethod]
public void MyTimeoutClass_SuccessfulGetShortDelay_ReturnsResult()
{
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    var scheduler = new TestScheduler();
    var stub = new SuccessHttpServiceStub
    {
        Scheduler = scheduler,
        Delay = TimeSpan.FromSeconds(0.5),
    };
    var my = new MyTimeoutClass(stub);
    string result = null;

    my.GetStringWithTimeout("http://www.example.com/", scheduler)
        .Subscribe(r => { result = r; });

    scheduler.Start();

    Assert.AreEqual("stub", result);
}

The code simulates a network delay of half a second. It’s important to note that this unit
test does not take half a second to run; on my machine, it takes about 70 milliseconds.
The half-second delay only exists in virtual time. The other notable difference in this
unit test is that it is not asynchronous; since we are using TestScheduler, all our tests
can complete immediately.

Now that everything is using test schedulers, it’s easy to test timeout situations:

[TestMethod]
public void MyTimeoutClass_SuccessfulGetLongDelay_ThrowsTimeoutException()
{
    var scheduler = new TestScheduler();
    var stub = new SuccessHttpServiceStub
    {
        Scheduler = scheduler,
        Delay = TimeSpan.FromSeconds(1.5),
    };
    var my = new MyTimeoutClass(stub);
    Exception result = null;

    my.GetStringWithTimeout("http://www.example.com/", scheduler)
        .Subscribe(_ => Assert.Fail("Received value"), ex => { result = ex; });

    scheduler.Start();

    Assert.IsInstanceOfType(result, typeof(TimeoutException));
}

Once again, this unit test does not take 1 second (or 1.5 seconds) to run; it executes
immediately using virtual time.
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Discussion
We’ve just scratched the surface on Reactive Extensions schedulers and virtual time. I
recommend that you start unit testing when you start writing Rx code; as your code
grows more complex, rest assured that the Rx testing is capable of handling it.

TestScheduler also has AdvanceTo and AdvanceBy methods, which allow you to grad‐
ually step through virtual time. There may be situations where these are useful, but you
should strive to have your unit tests only test one thing. For example, when testing a
timeout, you could write a single unit test that advanced the TestScheduler partially
and ensured the timeout did not happen early and then advanced the TestScheduler
past the timeout value and ensured the timeout did happen. However, I prefer to have
independent unit tests as much as possible, for example, one unit test ensuring that the
timeout did not happen early, and a different unit test ensuring that the timeout did
happen later.

See Also
Recipe 6.5 covers the basics of unit testing observable sequences. 
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CHAPTER 7

Interop

Asynchronous, parallel, reactive—each has its place, but how well do they work to‐
gether?

In this chapter, we’ll look at various interop scenarios where we will learn how to com‐
bine these different approaches. We’ll learn that they complement each other, rather
than compete; there is very little friction at the boundaries where one approach meets
another.

7.1. Async Wrappers for “Async” Methods with
“Completed” Events
Problem
There is an older asynchronous pattern that uses methods named OperationAsync
along with events named OperationCompleted. You wish to perform an operation like
this and await the result.

The OperationAsync and OperationCompleted pattern is called the
Event-based Asynchronous Pattern (EAP). We’re going to wrap those
into a Task-returning method that follows the Task-based Asynchro‐
nous Pattern (TAP).

Solution
You can create wrappers for asynchronous operations by using the TaskCompletion
Source<TResult> type. This type controls a Task<TResult> and allows you to complete
the task at the appropriate time.
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The following example defines an extension method for WebClient that downloads a
string. The WebClient type defines DownloadStringAsync and DownloadStringCom
pleted. Using those, we can define a DownloadStringTaskAsync method as such:

public static Task<string> DownloadStringTaskAsync(this WebClient client,
    Uri address)
{
    var tcs = new TaskCompletionSource<string>();

    // The event handler will complete the task and unregister itself.
    DownloadStringCompletedEventHandler handler = null;
    handler = (_, e) =>
    {
        client.DownloadStringCompleted -= handler;
        if (e.Cancelled)
            tcs.TrySetCanceled();
        else if (e.Error != null)
            tcs.TrySetException(e.Error);
        else
            tcs.TrySetResult(e.Result);
    };

    // Register for the event and *then* start the operation.
    client.DownloadStringCompleted += handler;
    client.DownloadStringAsync(address);

    return tcs.Task;
}

If you’re already using the Nito.AsyncEx NuGet library, wrappers like this are slightly
simpler due to the TryCompleteFromEventArgs extension method in that library:

public static Task<string> DownloadStringTaskAsync(this WebClient client,
    Uri address)
{
    var tcs = new TaskCompletionSource<string>();

    // The event handler will complete the task and unregister itself.
    DownloadStringCompletedEventHandler handler = null;
    handler = (_, e) =>
    {
        client.DownloadStringCompleted -= handler;
        tcs.TryCompleteFromEventArgs(e, () => e.Result);
    };

    // Register for the event and *then* start the operation.
    client.DownloadStringCompleted += handler;
    client.DownloadStringAsync(address);

    return tcs.Task;
}
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Discussion
This particular example isn’t very useful because WebClient already defines a Download
StringTaskAsync and there is a more async-friendly HttpClient that could also be
used. However, this same technique can be used to interface with older asynchronous
code that has not yet been updated to use Task.

For new code, always use HttpClient. Only use WebClient if you’re
working with legacy code.

Normally, a TAP method for downloading strings would be named OperationAsync
(e.g., DownloadStringAsync); however, that naming convention won’t work in this case
because EAP already defines a method with that name. In this case, the convention is
to name the TAP method OperationTaskAsync (e.g., DownloadStringTaskAsync).

When wrapping EAP methods, there is the possibility that the “start” method may throw
an exception; in the previous example, DownloadStringAsync may throw. In that case,
you’ll need to decide whether to allow the exception to propagate, or catch the exception
and call TrySetException. Most of the time, exceptions thrown at that point are usage
errors, so it doesn’t matter which option you choose.

See Also
Recipe 7.2 covers TAP wrappers for APM methods (BeginOperation and EndOpera
tion).

Recipe 7.3 covers TAP wrappers for any kind of notification.

7.2. Async Wrappers for “Begin/End” methods
Problem
There is an older asynchronous pattern that uses pairs of methods named BeginOpera
tion and EndOperation, with the IAsyncResult representing the asynchronous oper‐
ation. You have an operation that follows this pattern and wish to consume it with await.

The BeginOperation and EndOperation pattern is called the Asyn‐
chronous Programming Model (APM). We’re going to wrap those
into a Task-returning method that follows the Task-based Asynchro‐
nous Pattern (TAP).
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Solution
The best approach for wrapping APM is to use one of the FromAsync methods on the
TaskFactory type. FromAsync uses TaskCompletionSource<TResult> under the hood,
but when you’re wrapping APM, FromAsync is much easier to use.

The following example defines an extension method for WebRequest that sends an
HTTP request and gets the response. The WebRequest type defines BeginGetRes
ponse and EndGetResponse; we can define a GetResponseAsync method as such:

public static Task<WebResponse> GetResponseAsync(this WebRequest client)
{
    return Task<WebResponse>.Factory.FromAsync(client.BeginGetResponse,
        client.EndGetResponse, null);
}

Discussion
FromAsync has a downright confusing number of overloads!

As a general rule, it’s best to call FromAsync like the example. First, pass the Be
ginOperation method (without calling it) then the EndOperation method (without
calling it). Next, pass all arguments that BeginOperation, takes except for the last
AsyncCallback and object arguments. Finally, pass null.

In particular, do not call the BeginOperation method before calling FromAsync. It is
possible to call FromAsync, passing the IAsyncOperation that you get from BeginOper
ation, but if you call it this way, FromAsync is forced to use a less performant imple‐
mentation.

You might be wondering why the recommended pattern always passes a null at the end.
FromAsync was introduced along with the Task type in .NET 4.0, before async was
around. At that time, it was common to use state objects in asynchronous callbacks,
and the Task type supports this via its AsyncState member. In the new async pattern,
state objects are no longer necessary.

See Also
Recipe 7.3 covers writing TAP wrappers for any kind of notification.

7.3. Async Wrappers for Anything
Problem
You have an unusual or nonstandard asynchronous operation or event and wish to
consume it via await.
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Solution
The TaskCompletionSource<T> type can be used to construct Task<T> objects in any
scenario. Using a TaskCompletionSource<T>, you can complete a task in three different
ways: with a successful result, faulted, or canceled.

Before async was on the scene, there were two other asynchronous patterns recom‐
mended by Microsoft: APM (which we looked at in Recipe 7.2) and EAP (Recipe 7.1).
However, both APM and EAP were rather awkward and in some cases difficult to get
right. So, an unofficial convention arose that used callbacks, with methods like this:

public interface IMyAsyncHttpService
{
    void DownloadString(Uri address, Action<string, Exception> callback);
}

Methods like these follow the convention that DownloadString will start the (asyn‐
chronous) download, and when it completes, the callback is invoked with either the
result or the exception. Usually, callback is invoked on a background thread.

This nonstandard kind of asynchronous method can also be wrapped using TaskCom
pletionSource<T> so that it naturally works with await:

public static Task<string> DownloadStringAsync(
    this IMyAsyncHttpService httpService, Uri address)
{
    var tcs = new TaskCompletionSource<string>();
    httpService.DownloadString(address, (result, exception) =>
    {
        if (exception != null)
            tcs.TrySetException(exception);
        else
            tcs.TrySetResult(result);
    });
    return tcs.Task;
}

Discussion
This same pattern can be used with TaskCompletionSource<T> to wrap any asynchro‐
nous method, no matter how nonstandard. Create the TaskCompletionSource<T> in‐
stance first. Next, arrange a callback so that the TaskCompletionSource<T> completes
its task appropriately. Then, start the actual asynchronous operation. Finally, return the
Task<T> that is attached to that TaskCompletionSource<T>.

One important aspect of this pattern is that you must make sure that the TaskComple
tionSource<T> is always completed. Think through your error handling in particular,
and ensure that the TaskCompletionSource<T> will be completed appropriately. In the
last example, exceptions are explicitly passed into the callback, so we don’t need a catch
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block; but some nonstandard patterns might need you to catch exceptions in your call‐
backs and place them on the TaskCompletionSource<T>.

See Also
Recipe 7.1 covers TAP wrappers for EAP members (OperationAsync, OperationCom
pleted).

Recipe 7.2 covers TAP wrappers for APM members (BeginOperation, EndOperation).

7.4. Async Wrappers for Parallel Code
Problem
You have (CPU-bound) parallel processing that you wish to consume using await. 
Usually, this is desirable so that your UI thread does not block waiting for the parallel
processing to complete.

Solution
The Parallel type and Parallel LINQ use the thread pool to do parallel processing.
They will also include the calling thread as one of the parallel processing threads, so if
you call a parallel method from the UI thread, the UI will be unresponsive until the
processing completes.

To keep the UI responsive, wrap the parallel processing in a Task.Run and await the
result:

await Task.Run(() => Parallel.ForEach(...));

The key behind this recipe is that parallel code includes the calling thread in its pool of
threads that it uses to do the parallel processing. This is true for both Parallel LINQ and
the Parallel class.

Discussion
This is a simple recipe but one that is often overlooked. By using Task.Run, you are
pushing all of the parallel processing off to the thread pool. Task.Run returns a Task
that then represents that parallel work, and the UI thread can (asynchronously) wait
for it to complete.

This recipe only applies to UI code. On the server side (e.g., ASP.NET), parallel pro‐
cessing is rarely done. Even if you do perform parallel processing, you should invoke it
directly, not push it off to the thread pool.
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See Also
Chapter 3 covers the basics of parallel code.

Chapter 2 covers the basics of asynchronous code.

7.5. Async Wrappers for Rx Observables
Problem
You have an observable stream that you wish to consume using await.

Solution
First, you need to decide which of the observable events in the event stream you’re
interested in. The common situations are:

• The last event before the stream ends
• The next event
• All the events

To capture the last event in the stream, you can either await the result of LastAsync or
just await the observable directly:

IObservable<int> observable = ...;
int lastElement = await observable.LastAsync();
// or:  int lastElement = await observable;

When you await an observable or LastAsync, the code (asynchronously) waits until
the stream completes and then returns the last element. Under the covers, the await is
subscribing to the stream.

To capture the next event in the stream, use FirstAsync. In this case, the await sub‐
scribes to the stream and then completes (and unsubscribes) as soon as the first event
arrives:

IObservable<int> observable = ...;
int nextElement = await observable.FirstAsync();

To capture all events in the stream, you can use ToList:

IObservable<int> observable = ...;
IList<int> allElements = await observable.ToList();

Discussion
The Rx library provides all the tools you need to consume streams using await. The
only tricky part is that you have to think about whether the awaitable will wait until the
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stream completes. Of the examples in this recipe, LastAsync, ToList, and the direct
await will wait until the stream completes; FirstAsync will only wait for the next event.

If these examples don’t satisfy your needs, remember that you have the full power of
LINQ as well as the new Rx manipulators. Operators such as Take and Buffer can also
help you asynchronously wait for the elements you need without having to wait for the
entire stream to complete.

Some of the operators for use with await—such as FirstAsync and LastAsync—do not
actually return a Task<T>. If you plan to use Task.WhenAll or Task.WhenAny, then you’ll
need an actual Task<T>, which you can get by calling ToTask on any observable. To
Task will return a Task<T> that completes with the last value in the stream.

See Also
Recipe 7.6 covers using asynchronous code within an observable stream.

Recipe 7.7 covers using observable streams as an input to a dataflow block (which can
perform asynchronous work).

Recipe 5.3 covers windows and buffering for observable streams.

7.6. Rx Observable Wrappers for async Code
Problem
You have an asynchronous operation that you want to combine with an observable.

Solution
Any asynchronous operation can be treated as an observable stream that either:

• Produces a single element and then completes
• Faults without producing any elements

The Rx library includes a simple conversion from Task<T> to IObservable<T> that
implements this transformation. The following code starts an asynchronous download
of a web page, treating it as an observable sequence:

var client = new HttpClient();
IObservable<HttpResponseMessage> response =
    client.GetAsync("http://www.example.com/")
    .ToObservable();

The ToObservable approach assumes you have already called the async method and
have a Task to convert.
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Another approach is to call StartAsync. StartAsync also calls the async method im‐
mediately but supports cancellation: if a subscription is disposed of, the async method
is canceled:

var client = new HttpClient();
IObservable<HttpResponseMessage> response = Observable
    .StartAsync(token => client.GetAsync("http://www.example.com/", token));

Both ToObservable and StartAsync immediately start the asynchronous operation
without waiting for a subscription. If you want to create an observable that only starts
the operation when subscribed to, you can use FromAsync (which also supports can‐
cellation just like StartAsync):

var client = new HttpClient();
IObservable<HttpResponseMessage> response = Observable
    .FromAsync(token => client.GetAsync("http://www.example.com/", token));

FromAsync is notably different than ToObservable and StartAsync. Both ToObserva
ble and StartAsync return an observable for an async operation that has already start‐
ed. FromAsync starts a new, independent async operation every time it is subscribed to.

Finally, you can use special overloads of SelectMany to start asynchronous operations
for each event in a source stream as they arrive. SelectMany also supports cancellation.

The following example takes an existing event stream of URLs and then initiates a
request as each URL arrives:

IObservable<string> urls = ...
var client = new HttpClient();
IObservable<HttpResponseMessage> responses = urls
    .SelectMany((url, token) => client.GetAsync(url, token));

Discussion
Reactive Extensions existed before the introduction of async but added these operators
(and others) so that it could interoperate well with async code. I recommend that you
use the operators described even though you can build the same functionality using
other Rx operators.

See Also
Recipe 7.5 covers consuming observable streams with asynchronous code.

Recipe 7.7 covers using dataflow blocks (which can contain asynchronous code) as
sources of observable streams.
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7.7. Rx Observables and Dataflow Meshes
Problem
Part of your solution uses Rx observables, and part of your solution uses dataflow
meshes, and you need them to communicate.

Rx observables and dataflow meshes each have their own uses, with some conceptual
overlap; this recipe shows how easily they work together so you can use the best tool
for each part of the job.

Solution
First, let’s consider using a dataflow block as an input to an observable stream. The
following code creates a buffer block (which does no processing) and creates an ob‐
servable interface from that block by calling AsObservable:

var buffer = new BufferBlock<int>();
IObservable<int> integers = buffer.AsObservable();
integers.Subscribe(data => Trace.WriteLine(data),
    ex => Trace.WriteLine(ex),
    () => Trace.WriteLine("Done"));

buffer.Post(13);

Buffer blocks and observable streams can be completed normally or with error, and the
AsObservable method will translate the block completion (or fault) into the completion
of the observable stream. However, if the block faults with an exception, that exception
will be wrapped in an AggregateException when it is passed to the observable stream.
This is similar to how linked blocks propagate their faults.

It is only a little more complicated to take a mesh and treat it as a destination for an
observable stream. The following code calls AsObserver to allow a block to subscribe
to an observable stream:

IObservable<DateTimeOffset> ticks =
    Observable.Interval(TimeSpan.FromSeconds(1))
    .Timestamp()
    .Select(x => x.Timestamp)
    .Take(5);

var display = new ActionBlock<DateTimeOffset>(x => Trace.WriteLine(x));
ticks.Subscribe(display.AsObserver());

try
{
    display.Completion.Wait();
    Trace.WriteLine("Done.");
}
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catch (Exception ex)
{
    Trace.WriteLine(ex);
}

Just as before, the completion of the observable stream is translated to the completion
of the block, and any errors from the observable stream are translated to a fault of the
block.

Discussion
Dataflow blocks and observable streams share a lot of conceptual ground. They both
have data pass through them, and they both understand completion and faults. They
were designed for different scenarios; TPL Dataflow is intended for a mixture of asyn‐
chronous and parallel programming, while Rx is intended for reactive programming.
However, the conceptual overlap is compatible enough that they work very well and
naturally together.

See Also
Recipe 7.5 covers consuming observable streams with asynchronous code.

Recipe 7.6 covers using asynchronous code within an observable stream. 
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CHAPTER 8

Collections

Using the proper collections is essential in concurrent applications. I’m not talking about
the standard collections like List<T>; I assume you already know about those. The
purpose of this chapter is to introduce newer collections that are specifically intended
for concurrent or asynchronous use.

Immutable collections are collection instances that can never change. At first glance, this
sounds completely useless; but they’re actually very useful even in single-threaded,
nonconcurrent applications. Read-only operations (such as enumeration) act directly
on the immutable instance. Write operations (such as adding an item) return a new
immutable instance instead of changing the existing instance. This is not as wasteful as
it first sounds because most of the time immutable collections share most of their
memory. Furthermore, immutable collections have the advantage of being implicitly
safe to access from multiple threads; since they cannot change, they are threadsafe.

Immutable collections are in the Microsoft.Bcl.Immutable NuGet
package.

At the time of this writing, immutable collections are new, but they should be considered
for all new development unless you need a mutable instance. If you’re not familiar with
immutable collections, I recommend that you start with Recipe 8.1, even if you don’t
need a stack or queue, because I’ll cover several common patterns that all immutable
collections follow.

If you need to construct an immutable collection with lots of existing elements, there
are special ways to do this efficiently; the example code in these recipes only add elements
one at a time. The MSDN documentation has details on how to efficiently construct
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immutable collections if you need to speed up your initialization. Table 8-1 details the
platform availability of immutable collections.

Table 8-1. Immutable collections platform availability
Platform ImmutableStack<T>, etc.

.NET 4.5

.NET 4.0

Mono iOS/Droid

Windows Store

Windows Phone Apps 8.1

Windows Phone SL 8.0

Windows Phone SL 7.1

Silverlight 5

Threadsafe collections are mutable collection instances that can be changed by multiple
threads simultaneously. Threadsafe collections use a mixture of fine-grained locks and
lock-free techniques to ensure that threads are blocked for a minimal amount of time
(and usually are not blocked at all). For many threadsafe collections, enumeration of
the collection actually creates a snapshot of the collection and then enumerates that
snapshot. The key advantage of threadsafe collections is that they can be accessed safely
from multiple threads, yet the operations will only block your code for a short time, if
at all. Table 8-2 details the platform availability of threadsafe collections.

Table 8-2. Threadsafe collections platform availability
Platform ConcurrentDictionary<TKey, TValue>, etc.

.NET 4.5

.NET 4.0

Mono iOS/Droid

Windows Store

Windows Phone Apps 8.1

Windows Phone SL 8.0

Windows Phone SL 7.1

Silverlight 5

Producer/consumer collections are mutable collection instances that are designed with
a specific purpose in mind: to allow (possibly multiple) producers to push items to the
collection while allowing (possibly multiple) consumers to pull items out of the collec‐
tion. So they act as a bridge between producer code and consumer code, and also have
an option to limit the number of items in the collection. Producer/consumer collections
can either have a blocking or asynchronous API. For example, when the collection is
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empty, a blocking producer/consumer collection will block the calling consumer thread
until another item is added; but an asynchronous producer/consumer collection will
allow the calling consumer thread to asynchronously wait until another item is added.
Table 8-3 details the platform availability of producer/consumer collections.

AsyncProducerConsumerQueue<T> and AsyncCollection<T> are in
the Nito.AsyncEx NuGet package. BufferBlock<T> is in the Micro
soft.Tpl.Dataflow NuGet package.

Table 8-3. Producer/consumer collections platform availability
Platform BlockingCollection<T> BufferBlock<T> AsyncProducerConsumerQueue<T> AsyncCollection<T>

.NET 4.5

.NET 4.0

Mono iOS/
Droid

Windows
Store

Windows
Phone Apps
8.1

Windows
Phone SL 8.0

Windows
Phone SL 7.1

Silverlight 5

There are a number of different producer/consumer collections used in the recipes in
this chapter, and different producer/consumer collections have different advantages.
Table 8-4 may be helpful in determining which one you should use.

Table 8-4. Producer/consumer collections
Feature BlockingCollection<T> BufferBlock<T> AsyncProducerConsumerQueue<T> AsyncCollection<T>

Queue
semantics

Stack/bag
semantics

Synchronous
API

Asynchronous
API
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Feature BlockingCollection<T> BufferBlock<T> AsyncProducerConsumerQueue<T> AsyncCollection<T>

Mobile
platform
support

Partial Partial Partial

Tested by
Microsoft

8.1. Immutable Stacks and Queues
Problem
You need a stack or queue that does not change very often and can be accessed by
multiple threads safely.

For example, a queue can be used as a sequence of operations to perform, and a stack
can be used as a sequence of undo operations.

Solution
Immutable stacks and queues are the simplest immutable collections. They behave very
similarly to the standard Stack<T> and Queue<T>. Performance-wise, immutable stacks
and queues have the same time complexity as standard stacks and queues; however, in
simple scenarios where the collections are updated frequently, the standard stack and
queue are faster.

Stacks are a first-in, first-out data structure. The following code creates an empty im‐
mutable stack, pushes two items, enumerates the items, and then pops an item:

var stack = ImmutableStack<int>.Empty;
stack = stack.Push(13);
stack = stack.Push(7);

// Displays "7" followed by "13".
foreach (var item in stack)
    Trace.WriteLine(item);

int lastItem;
stack = stack.Pop(out lastItem);
// lastItem == 7

Note that we keep overwriting the local variable stack in the preceding example. Im‐
mutable collections follow a pattern where they return an updated collection; the orig‐
inal collection reference is unchanged. This means that once you have a reference to a
particular immutable collection instance, it will never change; consider the following
example:
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var stack = ImmutableStack<int>.Empty;
stack = stack.Push(13);
var biggerStack = stack.Push(7);

// Displays "7" followed by "13".
foreach (var item in biggerStack)
    Trace.WriteLine(item);

// Only displays "13".
foreach (var item in stack)
    Trace.WriteLine(item);

Under the covers, the two stacks are actually sharing the memory used to contain the
item 13. This kind of implementation is very efficient while also allowing you to easily
snapshot the current state. Each immutable collection instance is naturally threadsafe,
but this can also be used in single-threaded applications. In my experience, immutable
collections are especially useful when the code is more functional or when you need to
store a large number of snapshots and want them to share memory as much as possible.

Queues are similar to stacks, except they are a first-in, last-out data structure. The fol‐
lowing code creates an empty immutable queue, enqueues two items, enumerates the
items, and then dequeues an item:

var queue = ImmutableQueue<int>.Empty;
queue = queue.Enqueue(13);
queue = queue.Enqueue(7);

// Displays "13" followed by "7".
foreach (var item in queue)
    Trace.WriteLine(item);

int nextItem;
queue = queue.Dequeue(out nextItem);
// Displays "13"
Trace.WriteLine(nextItem);

Discussion
This recipe introduced the two simplest immutable collections, the stack and the queue.
However, we covered several important design philosophies that are true for all im‐
mutable collections:

• An instance of an immutable collection never changes.
• Since it never changes, it is naturally threadsafe.
• When you call a modifying method on an immutable collection, the modified col‐

lection is returned.
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Immutable collections are ideal for sharing state. However, they don’t work as well as
communication conduits. In particular, don’t use an immutable queue to communicate
between threads; producer/consumer queues work much better for that.

ImmutableStack<T> and ImmutableQueue<T> are in the Micro
soft.Bcl.Immutable NuGet package.

See Also
Recipe 8.6 covers threadsafe (blocking) mutable queues.

Recipe 8.7 covers threadsafe (blocking) mutable stacks.

Recipe 8.8 covers async-compatible mutable queues.

Recipe 8.9 covers async-compatible mutable stacks.

Recipe 8.10 covers blocking/asynchronous mutable queues.

8.2. Immutable Lists
Problem
You need a data structure you can index into that does not change very often and can
be accessed by multiple threads safely.

A list is a general-purpose data structure that can be used for all kinds of application
state.

Solution
Immutable lists do allow indexing, but you need to be aware of the performance char‐
acteristics. They’re not just a drop-in replacement for List<T>.

ImmutableList<T> does support similar methods as List<T>, as this example shows:

var list = ImmutableList<int>.Empty;
list = list.Insert(0, 13);
list = list.Insert(0, 7);

// Displays "7" followed by "13".
foreach (var item in list)
    Trace.WriteLine(item);

list = list.RemoveAt(1);
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However, the immutable list is internally organized as a binary tree. This is done so that
immutable list instances may maximize the amount of memory they share with other
instances. As a result, there are performance differences between ImmutableList<T>
and List<T> for some common operations (Table 8-5).

Table 8-5. Performance difference of immutable lists
Operation List<T> ImmutableList<T>

Add amortized O(1) O(log N)

Insert O(N) O(log N)

RemoveAt O(N) O(log N)

Item[index] O(1) O(log N)

Of particular note, the indexing operation for ImmutableList<T> is O(log N), not O(1)
as you may expect. If you are replacing List<T> with ImmutableList<T> in existing
code, you’ll need to consider how your algorithms access items in the collection.

This means that you should use foreach instead of for whenever possible. A foreach
loop over an ImmutableList<T> executes in O(N) time, while a for loop over the same
collection executes in O(N * log N) time:

// The best way to iterate over an ImmutableList<T>
foreach (var item in list)
    Trace.WriteLine(item);

// This will also work, but it will be much slower.
for (int i = 0; i != list.Count; ++i)
    Trace.WriteLine(list[i]);

Discussion
ImmutableList<T> is a good general-purpose data structure, but because of its perfor‐
mance differences, you can’t blindly replace all your List<T> uses with it. List<T> is
commonly used by default—that is, it’s the one you use unless you need a different
collection. ImmutableList<T> isn’t quite that ubiquitous; you’ll need to consider the
other immutable collections carefully and choose the one that makes the most sense for
your situation.

ImmutableList<T> is in the Microsoft.Bcl.Immutable NuGet pack‐
age.
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See Also
Recipe 8.1 covers immutable stacks and queues, which are like lists that only allow
certain elements to be accessed.

MSDN documentation on ImmutableList<T>.Builder, an efficient way to populate an
immutable list.

8.3. Immutable Sets
Problem
You need a data structure that does not need to store duplicates, does not change very
often, and can be accessed by multiple threads safely.

For example, an index of words from a file would be a good use case for a set.

Solution
There are two immutable set types: ImmutableHashSet<T> is just a collection of unique
items, and ImmutableSortedSet<T> is a sorted collection of unique items. Both types
of sets have a similar interface:

var hashSet = ImmutableHashSet<int>.Empty;
hashSet = hashSet.Add(13);
hashSet = hashSet.Add(7);

// Displays "7" and "13" in an unpredictable order.
foreach (var item in hashSet)
    Trace.WriteLine(item);

hashSet = hashSet.Remove(7);

Only the sorted set allows indexing into it like a list:

var sortedSet = ImmutableSortedSet<int>.Empty;
sortedSet = sortedSet.Add(13);
sortedSet = sortedSet.Add(7);

// Displays "7" followed by "13".
foreach (var item in hashSet)
    Trace.WriteLine(item);
var smallestItem = sortedSet[0];
// smallestItem == 7

sortedSet = sortedSet.Remove(7);

Unsorted sets and sorted sets have similar performance (see Table 8-6).
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Table 8-6. Performance of immutable sets
Operation ImmutableHashSet<T> ImmutableSortedSet<T>

Add O(log N) O(log N)

Remove O(log N) O(log N)

Item[index] n/a O(log N)

However, I recommend you use an unsorted set unless you know it needs to be sorted.
Many types only support basic equality and not full comparison, so an unsorted set can
be used for many more types than a sorted set.

One important note about the sorted set is that its indexing is O(log N), not O(1), just
like ImmutableList<T>, which we looked at in Recipe 8.2. This means the same caveat
applies: you should use foreach instead of for whenever possible with an Immutable
SortedSet<T>.

Discussion
Immutable sets are useful data structures, but populating a large immutable set can be
slow. Most immutable collections have special builders that can be used to construct
them quickly in a mutable way and then convert them into an immutable collection.
This is true for many immutable collections, but I’ve found them most useful for im‐
mutable sets.

ImmutableHashSet<T> and ImmutableSortedSet<T> are in the Micro
soft.Bcl.Immutable NuGet package.

See Also
Recipe 8.7 covers threadsafe mutable bags, which are similar to sets.

Recipe 8.9 covers async-compatible mutable bags.

MSDN documentation on ImmutableHashSet<T>.Builder, an efficient way to populate
an immutable hash set.

MSDN documentation on ImmutableSortedSet<T>.Builder, an efficient way to pop‐
ulate an immutable sorted set.
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8.4. Immutable Dictionaries
Problem
You need a key/value collection that does not change very often and can be accessed by
multiple threads safely.

For example, you may want to store reference data in a lookup collection; the reference
data rarely changes but should be available to different threads.

Solution
There are two immutable dictionary types: ImmutableDictionary<TKey, TValue> and
ImmutableSortedDictionary<TKey, TValue>. As you may be able to guess, Immuta
bleSortedDictionary ensures that its elements are sorted, while the items in Immuta
bleDictionary have an unpredictable order.

Both of these collection types have very similar members:

var dictionary = ImmutableDictionary<int, string>.Empty;
dictionary = dictionary.Add(10, "Ten");
dictionary = dictionary.Add(21, "Twenty-One");
dictionary = dictionary.SetItem(10, "Diez");

// Displays "10Diez" and "21Twenty-One" in an unpredictable order.
foreach (var item in dictionary)
    Trace.WriteLine(item.Key + item.Value);

var ten = dictionary[10];
// ten == "Diez"

dictionary = dictionary.Remove(21);

Note the use of SetItem. In a mutable dictionary, you could do something like dictio
nary[key] = item, but immutable dictionaries must return the updated immutable
dictionary, so they use the SetItem method instead:

var sortedDictionary = ImmutableSortedDictionary<int, string>.Empty;
sortedDictionary = sortedDictionary.Add(10, "Ten");
sortedDictionary = sortedDictionary.Add(21, "Twenty-One");
sortedDictionary = sortedDictionary.SetItem(10, "Diez");

// Displays "10Diez" followed by "21Twenty-One".
foreach (var item in sortedDictionary)
    Trace.WriteLine(item.Key + item.Value);

var ten = sortedDictionary[10];
// ten == "Diez"

sortedDictionary = sortedDictionary.Remove(21);
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Unsorted dictionaries and sorted dictionaries have similar performance, but I recom‐
mend you use an unordered dictionary unless you need your elements to be sorted (see
Table 8-7). Unsorted dictionaries can be a little faster overall. Furthermore, unsorted
dictionaries can be used with any key types, while sorted dictionaries require their key
types to be fully comparable.

Table 8-7. Performance of immutable dictionaries
Operation ImmutableDictionary<TK,TV> ImmutableSortedDictionary<TK,TV>

Add O(log N) O(log N)

SetItem O(log N) O(log N)

Item[key] O(log N) O(log N)

Remove O(log N) O(log N)

Discussion
In my experience, dictionaries are a common and useful tool when dealing with appli‐
cation state. They can be used in any kind of key/value or lookup scenario.

Like other immutable collections, immutable dictionaries have a builder mechanism
for efficient construction if the dictionary contains many elements. For example, if you
load your initial reference data at startup, you should use the builder mechanism to
construct the initial immutable dictionary. On the other hand, if your reference data is
gradually built up during your application’s execution, then using the regular immutable
dictionary Add method is likely acceptable.

ImmutableDictionary<TK, TV> and ImmutableSortedDication

ary<TK, TV> are in the Microsoft.Bcl.Immutable NuGet package.

See Also
Recipe 8.5 covers threadsafe mutable dictionaries.

MSDN documentation on ImmutableDictionary<TK,TV>.Builder, an efficient way to
populate an immutable dictionary.

MSDN documentation on ImmutableSortedDictionary<TK,TV>.Builder, an efficient
way to populate an immutable sorted dictionary.
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8.5. Threadsafe Dictionaries
Problem
You have a key/value collection that you need to keep in sync, even though multiple
threads are both reading from and writing to it.

For example, consider a simple in-memory cache.

Solution
The ConcurrentDictionary<TKey, TValue> type in the .NET framework is a true gem
of data structures. It is threadsafe, using a mixture of fine-grained locks and lock-free
techniques to ensure fast access in the vast majority of scenarios.

Its API does take a bit of getting used to. It is not at all like the standard Dictio
nary<TKey, TValue> type, since it must deal with concurrent access from multiple
threads. However, once you learn the basics in this recipe, you’ll find ConcurrentDic
tionary<TKey, TValue> to be one of the most useful collection types.

First, let’s cover writing a value to the collection. To set the value of a key, you can use
AddOrUpdate as such:

var dictionary = new ConcurrentDictionary<int, string>();
var newValue = dictionary.AddOrUpdate(0,
    key => "Zero",
    (key, oldValue) => "Zero");

AddOrUpdate is a bit complex because it must do several things, depending on the cur‐
rent contents of the concurrent dictionary. The first method argument is the key. The
second argument is a delegate that transforms the key (in this case, 0) into a value to be
added to the dictionary (in this case, "Zero"). This delegate is only invoked if the key
does not exist in the dictionary. The third argument is another delegate that transforms
the key (0) and the old value into an updated value to be stored in the dictionary
("Zero"). This delegate is only invoked if the key does exist in the dictionary. AddOrUp
date returns the new value for that key (the same value that was returned by one of the
delegates).

Now for the part that really bends your brain: in order for the concurrent dictionary to
work properly, AddOrUpdate might have to invoke either (or both) delegates multiple
times. This is very rare, but it can happen. So your delegates should be simple and fast
and not cause side effects. This means that your delegate should only create the value;
it should not change any other variables in your application. The same principle holds
for all delegates you pass to methods on ConcurrentDictionary<TKey, TValue>.
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That was the hard part because it had to deal with all the thread safety concerns. The
rest of the API is easier.

In fact, there are several other ways to add values to a dictionary. One shortcut is to just
use indexing syntax:

// Using the same "dictionary" as above.
// Adds (or updates) key 0 to have the value "Zero".
dictionary[0] = "Zero";

Indexing syntax is less powerful; it does not give you the ability to update a value based
on the existing value. However, the syntax is simpler and works fine if you already have
the value you want to store in the dictionary.

Let’s look at how to read a value. This can be easily done via TryGetValue:

// Using the same "dictionary" as above.
string currentValue;
bool keyExists = dictionary.TryGetValue(0, out currentValue);

TryGetValue will return true and set the out value if the key was found in the dictionary.
If the key was not found, TryGetValue will return false. You can also use indexing
syntax to read values, but I find that much less useful because it will throw an exception
if a key is not found. Keep in mind that a concurrent dictionary has multiple threads
reading, updating, adding, and removing values; in many situations, it’s difficult to know
whether a key exists or not until you attempt to read it.

Removing values is just as easy as reading them:

// Using the same "dictionary" as above.
string removedValue;
bool keyExisted = dictionary.TryRemove(0, out removedValue);

TryRemove is almost identical to TryGetValue, except (of course) it removes the key/
value pair if the key was found in the dictionary.

Discussion
I think ConcurrentDictionary<TKey, TValue> is awesome, mainly because of the in‐
credibly powerful AddOrUpdate method. However, it doesn’t fit the bill in every situation.
ConcurrentDictionary<TKey, TValue> is best when you have multiple threads reading
and writing to a shared collection. If the updates are not constant (if they’re more rare),
than ImmutableDictionary<TKey, TValue> may be a better choice.

ConcurrentDictionary<TKey, TValue> is best in a shared-data situation, where mul‐
tiple threads share the same collection. If some threads only add elements and other
threads only remove elements, you’d be better served by a producer/consumer
collection.
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ConcurrentDictionary<TKey, TValue> is not the only threadsafe collection. The BCL
also provides ConcurrentStack<T>, ConcurrentQueue<T>, and ConcurrentBag<T>.
However, those threadsafe collections are seldomly used by themselves; they are usually
only used in the implementation of producer/consumer collections, which we will cover
in the rest of this chapter.

See Also
Recipe 8.4 covers immutable dictionaries, which are ideal if the contents of the dictio‐
nary change very rarely.

8.6. Blocking Queues
Problem
You need a conduit to pass messages or data from one thread to another. For example,
one thread could be loading data, which it pushes down the conduit as it loads; mean‐
while, there are other threads on the receiving end of the conduit that receive the data
and process it.

Solution
The .NET type BlockingCollection<T> was designed to be this kind of conduit. By
default, BlockingCollection<T> is a blocking queue, providing first-in, first-out be‐
havior.

A blocking queue needs to be shared by multiple threads, so it is usually defined as a
private, read-only field:

private readonly BlockingCollection<int> _blockingQueue =
    new BlockingCollection<int>();

Usually, a thread will either add items to the collection or remove items from the col‐
lection, but not both. Threads that add items are called producer threads, and threads
that remove items are called consumer threads.

Producer threads can add items by calling Add, and when the producer thread is finished
(i.e., all items have been added), it can finish the collection by calling CompleteAd
ding. This notifies the collection that no more items will be added to it, and the collection
can then inform its consumers that there are no more items.

Here’s a simple example of a producer that adds two items and then marks the collection
complete:

_blockingQueue.Add(7);
_blockingQueue.Add(13);
_blockingQueue.CompleteAdding();
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Consumer threads usually run in a loop, waiting for the next item and then processing
it. If you take the producer code and put it in a separate thread (e.g., via Task.Run), then
you can consume those items like this:

// Displays "7" followed by "13".
foreach (var item in _blockingQueue.GetConsumingEnumerable())
    Trace.WriteLine(item);

If you want to have multiple consumers, GetConsumingEnumerable can be called from
multiple threads at the same time. However, each item is only passed to one of those
threads. When the collection is completed, the enumerable completes.

When you use conduits like this, you do need to consider what happens if your pro‐
ducers run faster than your consumers, unless you are sure that your consumers will
always run faster. If you’re producing items faster than you can consume them, then
you may need to throttle your queue. BlockingCollection<T> makes this easy; you can
throttle the number of items by passing the appropriate value when you create it. This
simple example limits the collection to a single item:

BlockingCollection<int> _blockingQueue = new BlockingCollection<int>(
    boundedCapacity: 1);

Now, the same producer code will behave differently, as noted by the comments:

// This Add completes immediately.
_blockingQueue.Add(7);

// This Add waits for the 7 to be removed before it adds the 13.
_blockingQueue.Add(13);

_blockingQueue.CompleteAdding();

Discussion
The preceding examples all use GetConsumingEnumerable for the consumer threads;
this is the most common scenario. However, there is also a Take member that allows a
consumer to just consume a single item rather than run a loop consuming all the items.

Blocking queues are great when you have a separate thread (such as a thread-pool
thread) acting as a producer or consumer. They’re not as great when you want to access
the conduit asynchronously—for example, if a UI thread wants to act as a consumer.
We’ll look at asynchronous queues in Recipe 8.8.

Whenever you introduce a conduit like this into your application, consider switching
to the TPL Dataflow library. A lot of the time, using TPL Dataflow is simpler than
building your own conduits and background threads. In particular, BufferBlock<T>
can act like a blocking queue. However, TPL Dataflow is not available on all platforms,
so in some cases, blocking queues are the appropriate design choice.
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If you need maximum cross-platform support, you could also use AsyncProducerCon
sumerQueue<T> from the AsyncEx library, which can act like a blocking queue. Table 8-8
outlines the platform support for blocking queues.

Table 8-8. Platform support for blocking queues
Platform BlockingCollection<T> BufferBlock<T> AsyncProducerConsumerQueue<T>

.NET 4.5

.NET 4.0

Mono iOS/Droid

Windows Store

Windows Phone Apps 8.1

Windows Phone SL 8.0

Windows Phone SL 7.1

Silverlight 5

See Also
Recipe 8.7 covers blocking stacks and bags if you want a similar conduit without first-
in-first-out semantics.

Recipe 8.8 covers queues that have asynchronous rather than blocking APIs.

Recipe 8.10 covers queues that have both asynchronous and blocking APIs.

8.7. Blocking Stacks and Bags
Problem
You need a conduit to pass messages or data from one thread to another, but you don’t
want (or need) the conduit to have first-in, first-out semantics.

Solution
The .NET type BlockingCollection<T> acts as a blocking queue by default, but it can
also act like any kind of producer/consumer collection. BlockingCollection<T> is ac‐
tually a wrapper around a threadsafe collection that implements IProducerConsumer
Collection<T>.

So, you can create a BlockingCollection<T> with last-in-first-out (stack) semantics or
unordered (bag) semantics as such:

BlockingCollection<int> _blockingStack = new BlockingCollection<int>(
    new ConcurrentStack<int>());
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BlockingCollection<int> _blockingBag = new BlockingCollection<int>(
    new ConcurrentBag<int>());

It’s important to keep in mind that there are now race conditions around the ordering
of the items. If we let the same producer code execute before any consumer code, and
then execute the consumer code after the producer code, then the order of the items
will be exactly like a stack:

// Producer code
_blockingStack.Add(7);
_blockingStack.Add(13);
_blockingStack.CompleteAdding();

// Consumer code
// Displays "13" followed by "7".
foreach (var item in _blockingStack.GetConsumingEnumerable())
    Trace.WriteLine(item);

However, when the producer code and consumer code are on different threads (which
is the usual case), the consumer will always get the most recently added item next. For
example, the producer could add 7, the consumer could take 7, the producer could add
13, and the consumer could take 13. The consumer does not wait for CompleteAdding
to be called before it returns the first item.

Discussion
The same considerations around throttling that apply to blocking queues also apply to
blocking stacks and bags. If your producers run faster than your consumers and you
need to limit the memory usage of your blocking stack/bag, you can use throttling
exactly like we discussed in Recipe 8.6.

This recipe uses GetConsumingEnumerable for the consumer code; this is the most
common scenario. However, there is also a Take member that allows a consumer to just
consume a single item rather than run a loop consuming all the items.

If you want to access shared stacks or bags asynchronously rather than by blocking (for
example, having your UI thread act as a consumer), see Recipe 8.9.

See Also
Recipe 8.6 covers blocking queues, which are much more commonly used than blocking
stacks or bags.

Recipe 8.9 covers asynchronous stacks and bags.
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8.8. Asynchronous Queues
Problem
You need a conduit to pass messages or data from one part of code to another in a first-
in, first-out manner.

For example, one piece of code could be loading data, which it pushes down the conduit
as it loads; meanwhile, the UI thread is receiving the data and displaying it.

Solution
What you need is a queue with an asynchronous API. There is no type like this in the
core .NET framework, but there are a couple of options available from NuGet.

The first option is to use BufferBlock<T> from the TPL Dataflow library. The following
simple example shows how to declare a BufferBlock<T>, what the producer code looks
like, and what the consumer code looks like:

BufferBlock<int> _asyncQueue = new BufferBlock<int>();

// Producer code
await _asyncQueue.SendAsync(7);
await _asyncQueue.SendAsync(13);
_asyncQueue.Complete();

// Consumer code
// Displays "7" followed by "13".
while (await _asyncQueue.OutputAvailableAsync())
    Trace.WriteLine(await _asyncQueue.ReceiveAsync());

BufferBlock<T> also has built-in support for throttling. For full details, see Recipe 8.10.

The example consumer code uses OutputAvailbleAsync, which is really only useful if
you have a single consumer. If you have multiple consumers, it is possible that Outpu
tAvailbleAsync will return true for more than one consumer even though there is
only one item. If the queue is completed, then DequeueAsync will throw InvalidOper
ationException. So if you have multiple consumers, the consumer code usually looks
more like this:

while (true)
{
    int item;
    try
    {
        item = await _asyncQueue.ReceiveAsync();
    }
    catch (InvalidOperationException)
    {
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        break;
    }
    Trace.WriteLine(item);
}

If TPL Dataflow is available on your platform, I recommend the BufferBlock<T> sol‐
ution. Unfortunately, TPL Dataflow is not available everywhere. If BufferBlock<T> isn’t
available, you can use the AsyncProducerConsumerQueue<T> type from the Nito.Asyn
cEx NuGet library. The API is similar to but not exactly the same as BufferBlock<T>:

AsyncProducerConsumerQueue<int> _asyncQueue
    = new AsyncProducerConsumerQueue<int>();

// Producer code
await _asyncQueue.EnqueueAsync(7);
await _asyncQueue.EnqueueAsync(13);
await _asyncQueue.CompleteAdding();

// Consumer code
// Displays "7" followed by "13".
while (await _asyncQueue.OutputAvailableAsync())
    Trace.WriteLine(await _asyncQueue.DequeueAsync());

AsyncProducerConsumerQueue<T> has support for throttling, which is necessary if your
producers may run faster than your consumers. Just construct the queue with the ap‐
propriate value:

AsyncProducerConsumerQueue<int> _asyncQueue
    = new AsyncProducerConsumerQueue<int>(maxCount: 1);

Now, the same producer code will asynchronously wait appropriately:

// This Enqueue completes immediately.
await _asyncQueue.EnqueueAsync(7);

// This Enqueue (asynchronously) waits for the 7 to be removed
// before it enqueues the 13.
await _asyncQueue.EnqueueAsync(13);

await _asyncQueue.CompleteAdding();

This consumer code also uses OutputAvailableAsync, and has the same problems as
BufferBlock<T>. The AsyncProducerConsumerQueue<T> type provides a TryDequeueA
sync member that helps avoid cumbersome consumer code. If you have multiple con‐
sumers, the consumer code usually looks more like this:

while (true)
{
    var dequeueResult = await _asyncQueue.TryDequeueAsync();
    if (!dequeueResult.Success)
        break;
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    Trace.WriteLine(dequeueResult.Item);
}

Discussion
I do recommend that you use BufferBlock<T> over AsyncProducerConsumer
Queue<T>, simply because BufferBlock<T> has been much more thoroughly tested.
However, BufferBlock<T> is not available on many platforms, most notably older plat‐
forms (see Table 8-9).

The BufferBlock<T> type is in the Microsoft.Tpl.Dataflow Nu‐
Get package. The AsyncProducerConsumerQueue<T> type is in the
Nito.AsyncEx NuGet package.

Table 8-9. Platform support for asynchronous queues
Platform BufferBlock<T> AsyncProducerConsumerQueue<T>

.NET 4.5

.NET 4.0

Mono iOS/Droid

Windows Store

Windows Phone Apps 8.1

Windows Phone SL 8.0

Windows Phone SL 7.1

Silverlight 5

See Also
Recipe 8.6 covers producer/consumer queues with blocking semantics rather than
asynchronous semantics.

Recipe 8.10 covers producer/consumer queues that have both blocking and asynchro‐
nous semantics.

Recipe 8.7 covers asynchronous stacks and bags if you want a similar conduit without
first-in, first-out semantics.
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8.9. Asynchronous Stacks and Bags
Problem
You need a conduit to pass messages or data from one part of code to another, but you
don’t want (or need) the conduit to have first-in, first-out semantics.

Solution
The Nito.AsyncEx library provides a type AsyncCollection<T>, which acts like an
asynchronous queue by default, but it can also act like any kind of producer/consumer
collection. AsyncCollection<T> is a wrapper around an IProducerConsumerCollec
tion<T>. AsyncCollection<T> is the async equivalent of the .NET BlockingCollec
tion<T> that we saw in Recipe 8.7.

AsyncCollection<T> supports last-in, first-out (stack) or unordered (bag) semantics,
based on whatever collection you pass to its constructor:

AsyncCollection<int> _asyncStack = new AsyncCollection<int>(
    new ConcurrentStack<int>());
AsyncCollection<int> _asyncBag = new AsyncCollection<int>(
    new ConcurrentBag<int>());

Note that there is a race condition around the ordering of items in the stack. If all
producers complete before consumers start, then the order of items is like a regular
stack:

// Producer code
await _asyncStack.AddAsync(7);
await _asyncStack.AddAsync(13);
await _asyncStack.CompleteAddingAsync();

// Consumer code
// Displays "13" followed by "7".
while (await _asyncStack.OutputAvailableAsync())
    Trace.WriteLine(await _asyncStack.TakeAsync());

However, when both producers and consumers are executing concurrently (which is
the usual case), the consumer will always get the most recently added item next. This
will cause the collection as a whole to act not quite like a stack. Of course, the bag
collection has no ordering at all.

AsyncCollection<T> has support for throttling, which is necessary if producers may
add to the collection faster than the consumers can remove from it. Just construct the
collection with the appropriate value:

AsyncCollection<int> _asyncStack = new AsyncCollection<int>(
    new ConcurrentStack<int>(), maxCount: 1);
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Now the same producer code will asynchronously wait as needed:

// This Add completes immediately.
await _asyncStack.AddAsync(7);

// This Add (asynchronously) waits for the 7 to be removed
// before it enqueues the 13.
await _asyncStack.AddAsync(13);

await _asyncStack.CompleteAddingAsync();

The example consumer code uses OutputAvailbleAsync, which has the same limitation
as described in Recipe 8.8. If you have multiple consumers, the consumer code usually
looks more like this:

while (true)
{
    var takeResult = await _asyncStack.TryTakeAsync();
    if (!takeResult.Success)
        break;
    Trace.WriteLine(takeResult.Item);
}

Discussion
AsyncCollection<T> is really just the asynchronous equivalent of BlockingCollec
tion<T> and only supports the same platforms (see Table 8-10).

The AsyncCollection<T> type is in the Nito.AsyncEx NuGet pack‐
age.

Table 8-10. Platform support for stacks and bags
Platform BlockingCollection<T> (blocking) AsyncCollection<T> (asynchronous)

.NET 4.5

.NET 4.0

Mono iOS/Droid

Windows Store

Windows Phone Apps 8.1

Windows Phone SL 8.0

Windows Phone SL 7.1

Silverlight 5
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See Also
Recipe 8.8 covers asynchronous queues, which are much more common than asyn‐
chronous stacks or bags.

Recipe 8.7 covers synchronous (blocking) stacks and bags.

8.10. Blocking/Asynchronous Queues
Problem
You need a conduit to pass messages or data from one part of code to another in a first-
in, first-out manner, and you need the flexibility to treat either the producer end or the
consumer end as synchronous or asynchronous.

For example, a background thread may be loading data and pushing it into the conduit,
and you want this thread to synchronously block if the conduit is too full. At the same
time, the UI thread is receiving data from the conduit, and you want this thread to
asynchronously pull data from the conduit so the UI remains responsive.

Solution
We’ve looked at blocking queues in Recipe 8.6 and asynchronous queues in
Recipe 8.8, but there are a few queue types that support both blocking and asynchronous
APIs.

The first is BufferBlock<T> and ActionBlock<T> from the TPL Dataflow NuGet library.
BufferBlock<T> can be easily used as an asynchronous producer/consumer queue (see
Recipe 8.8 for more details):

BufferBlock<int> queue = new BufferBlock<int>();

// Producer code
await queue.SendAsync(7);
await queue.SendAsync(13);
queue.Complete();

// Consumer code for a single consumer
while (await queue.OutputAvailableAsync())
    Trace.WriteLine(await queue.ReceiveAsync());

// Consumer code for multiple consumers
while (true)
{
    int item;
    try
    {
        item = await queue.ReceiveAsync();
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    }
    catch (InvalidOperationException)
    {
        break;
    }

    Trace.WriteLine(item);
}

BufferBlock<T> also supports a synchronous API for both producers and consumers:

BufferBlock<int> queue = new BufferBlock<int>();

// Producer code
queue.Post(7);
queue.Post(13);
queue.Complete();

// Consumer code
while (true)
{
    int item;
    try
    {
        item = queue.Receive();
    }
    catch (InvalidOperationException)
    {
        break;
    }

    Trace.WriteLine(item);
}

However, the consumer code using BufferBlock<T> is rather awkward, since it is not
the “dataflow way.” The TPL Dataflow library includes a number of blocks that can be
linked together, allowing you to define a reactive mesh. In this case, a producer/
consumer queue completing with a particular action can be defined using Action
Block<T>:

// Consumer code is passed to queue constructor
ActionBlock<int> queue = new ActionBlock<int>(item => Trace.WriteLine(item));

// Asynchronous producer code
await queue.SendAsync(7);
await queue.SendAsync(13);

// Synchronous producer code
queue.Post(7);
queue.Post(13);
queue.Complete();
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If the TPL Dataflow library is not available on your desired platform(s), then there is
an AsyncProducerConsumerQueue<T> type in Nito.AsyncEx that also supports both
synchronous and asynchronous methods:

AsyncProducerConsumerQueue<int> queue = new AsyncProducerConsumerQueue<int>();

// Asynchronous producer code
await queue.EnqueueAsync(7);
await queue.EnqueueAsync(13);

// Synchronous producer code
queue.Enqueue(7);
queue.Enqueue(13);

queue.CompleteAdding();

// Asynchronous single consumer code
while (await queue.OutputAvailableAsync())
    Trace.WriteLine(await queue.DequeueAsync());

// Asynchronous multi-consumer code
while (true)
{
    var result = await queue.TryDequeueAsync();
    if (!result.Success)
        break;
    Trace.WriteLine(result.Item);
}

// Synchronous consumer code
foreach (var item in queue.GetConsumingEnumerable())
    Trace.WriteLine(item);

Discussion
Even though AsyncProducerConsumerQueue<T> supports a wider range of platforms, I
recommend using BufferBlock<T> or ActionBlock<T> if possible because the TPL
Dataflow library has been more extensively tested than the Nito.AsyncEx library.

All of the TPL Dataflow blocks as well as AsyncProducerConsumerQueue<T> also sup‐
port throttling by passing options to their constructors. Throttling is necessary when
you have producers that push items faster than your consumers can consume them,
which could cause your application to take up large amounts of memory. Platform
support for synchronous/asynchronous queues is outlined in Table 8-11.
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The BufferBlock<T> and ActionBlock<T> types are in the Micro
soft.Tpl.Dataflow NuGet package. The AsyncProducerConsumer
Queue<T> type is in the Nito.AsyncEx NuGet package.

Table 8-11. Platform support for synchronous/asynchronous queues
Platform BufferBlock<T> and ActionBlock<T> AsyncProducerConsumerQueue<T>

.NET 4.5

.NET 4.0

Mono iOS/Droid

Windows Store

Windows Phone Apps 8.1

Windows Phone SL 8.0

Windows Phone SL 7.1

Silverlight 5

See Also
Recipe 8.6 covers blocking producer/consumer queues.

Recipe 8.8 covers asynchronous producer/consumer queues.

Recipe 4.4 covers throttling dataflow blocks. 
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CHAPTER 9

Cancellation

The .NET 4.0 framework introduced exhaustive and well-designed cancellation sup‐
port. This support is cooperative, which means that cancellation can be requested but
not enforced on code. Since cancellation is cooperative, it is not possible to cancel code
unless it is written to support cancellation. For this reason, I recommend supporting
cancellation in as much of your own code as possible.

Cancellation is a type of signal, with two different sides: a source that triggers the can‐
cellation, and a receiver that responds to the cancellation. In .NET, the source is Can
cellationTokenSource and the receiver is CancellationToken. The recipes in this
chapter will cover both sides of cancellation in normal usage and describe how to use
the cancellation support to interoperate with nonstandard forms of cancellation.

Cancellation is treated as a special kind of error. The convention is that canceled code
will throw an exception of type OperationCanceledException (or a derived type, such
as TaskCanceledException). This way the calling code knows that the cancellation was
observed.

To indicate to calling code that your method supports cancellation, you should take a
CancellationToken as a parameter. This parameter is usually the last parameter, unless
your method also reports progress (Recipe 2.3). You can also consider providing an
overload or default parameter value for consumers that do not require cancellation:

public void CancelableMethodWithOverload(CancellationToken cancellationToken)
{
    // code goes here
}

public void CancelableMethodWithOverload()
{
    CancelableMethodWithOverload(CancellationToken.None);
}
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public void CancelableMethodWithDefault(
    CancellationToken cancellationToken = default(CancellationToken))
{
    // code goes here
}

CancellationToken.None is a special value that is equivalent to default(Cancella
tionToken) and represents a cancellation token that will never be canceled. Consumers
pass this value when they don’t ever want the operation to be canceled.

9.1. Issuing Cancellation Requests
Problem
You have cancelable code (that takes a CancellationToken) and you need to cancel it.

Solution
The CancellationTokenSource type is the source for a CancellationToken. The Can
cellationToken only enables code to respond to cancellation requests; the Cancella
tionTokenSource members allow code to request cancellation.

Each CancellationTokenSource is independent from every other CancellationToken
Source (unless you link them, which we will consider in Recipe 9.8). The Token property
returns a CancellationToken for that source, and the Cancel method issues the actual
cancellation request.

The following code illustrates creating a CancellationTokenSource and using Token
and Cancel. This code uses an async method because it’s easier to illustrate in a short
code sample; the same Token/Cancel pair is used to cancel all kinds of code:

void IssueCancelRequest()
{
    var cts = new CancellationTokenSource();
    var task = CancelableMethodAsync(cts.Token);

    // At this point, the operation has been started.

    // Issue the cancellation request.
    cts.Cancel();
}

In the example code above, the task variable is ignored after it has started running; in
real-world code, that task would probably be stored somewhere and awaited so that the
end user is aware of the final result.

When you cancel code, there is almost always a race condition. The cancelable code
may have been just about to finish when the cancel request is made, and if it doesn’t
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happen to check its cancellation token before finishing, it will actually complete suc‐
cessfully. In fact, when you cancel code, there are three possibilities: it may respond to
the cancellation request (throwing OperationCanceledException), it may finish suc‐
cessfully, or it may finish with an error unrelated to the cancellation (throwing a different
exception).

The following code is just like the last, except that it awaits the task, illustrating all three
possible results:

async Task IssueCancelRequestAsync()
{
    var cts = new CancellationTokenSource();
    var task = CancelableMethodAsync(cts.Token);

    // At this point, the operation is happily running.

    // Issue the cancellation request.
    cts.Cancel();

    // (Asynchronously) wait for the operation to finish.
    try
    {
        await task;
        // If we get here, the operation completed successfully
        //  before the cancellation took effect.
    }
    catch (OperationCanceledException)
    {
        // If we get here, the operation was canceled before it completed.
    }
    catch (Exception)
    {
        // If we get here, the operation completed with an error
        //  before the cancellation took effect.
        throw;
    }
}

Normally, setting up the CancellationTokenSource and issuing the cancellation are in
separate methods. Once you cancel a CancellationTokenSource instance, it is perma‐
nently canceled. If you need another source, you’ll need to create another instance. The
following code is a more realistic GUI-based example that uses one button to start an
asynchronous operation and another button to cancel it. It also disables and enables the
“start” and “cancel” buttons so that there can only be one operation at a time:

private CancellationTokenSource _cts;

private async void StartButton_Click(object sender, RoutedEventArgs e)
{
    StartButton.IsEnabled = false;
    CancelButton.IsEnabled = true;
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    try
    {
        _cts = new CancellationTokenSource();
        var token = _cts.Token;
        await Task.Delay(TimeSpan.FromSeconds(5), token);
        MessageBox.Show("Delay completed successfully.");
    }
    catch (OperationCanceledException)
    {
        MessageBox.Show("Delay was canceled.");
    }
    catch (Exception)
    {
        MessageBox.Show("Delay completed with error.");
        throw;
    }
    finally
    {
        StartButton.IsEnabled = true;
        CancelButton.IsEnabled = false;
    }
}

private void CancelButton_Click(object sender, RoutedEventArgs e)
{
    _cts.Cancel();
}

Discussion
The most realistic example in this recipe used a GUI application, but don’t get the im‐
pression that cancellation is just for user interfaces. Cancellation has its place on the
server as well; for example, ASP.NET provides a cancellation token representing the
request timeout. It’s true that cancellation token sources are rarer on the server side, but
there’s no reason you can’t use them; I have used a CancellationTokenSource to request
cancellation when ASP.NET decides to unload the app domain.

See Also
Recipe 9.4 covers passing tokens to async code.

Recipe 9.5 covers passing tokens to parallel code.

Recipe 9.6 covers using tokens with reactive code.

Recipe 9.7 covers passing tokens to dataflow meshes.
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9.2. Responding to Cancellation Requests by Polling
Problem
You have a loop in your code that needs to support cancellation.

Solution
When you have a processing loop in your code, then there isn’t a lower-level API to
which you can pass the CancellationToken. In this case, you should periodically check
whether the token has been canceled. The following code observes the token periodically
while executing a CPU-bound loop:

public int CancelableMethod(CancellationToken cancellationToken)
{
    for (int i = 0; i != 100; ++i)
    {
        Thread.Sleep(1000); // Some calculation goes here.
        cancellationToken.ThrowIfCancellationRequested();
    }
    return 42;
}

If your loop is very tight (i.e., if the body of your loop executes very quickly), then you
may want to limit how often you check your cancellation token. As always, measure
your performance before and after a change like this before deciding which way is best.
The following code is similar to the previous example, but it has more iterations of a
faster loop, so I added a limit to how often the token is checked:

public int CancelableMethod(CancellationToken cancellationToken)
{
    for (int i = 0; i != 100000; ++i)
    {
        Thread.Sleep(1); // Some calculation goes here.
        if (i % 1000 == 0)
            cancellationToken.ThrowIfCancellationRequested();
    }
    return 42;
}

The proper limit to use depends entirely on how much work you’re doing and how
responsive the cancellation needs to be.

Discussion
The majority of the time, your code should just pass through the CancellationToken
to the next layer. We’ll look at examples of this in Recipe 9.4, Recipe 9.5, Recipe 9.6, and
Recipe 9.7. This polling recipe should only be used if you have a processing loop that
needs to support cancellation.
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There is another member on CancellationToken called IsCancellationRequested,
which starts returning true when the token is canceled. Some people use this member
to respond to cancellation, usually by returning a default or null value. However, I do
not recommend that approach for most code. The standard cancellation pattern is to
raise an OperationCanceledException, which is taken care of by ThrowIfCancella
tionRequested. If code further up the stack wants to catch the exception and act like
the result is null, then that’s fine, but any code taking a CancellationToken should
follow the standard cancellation pattern. If you do decide not to follow the cancellation
pattern, at least document it clearly.

ThrowIfCancellationRequested works by polling the cancellation token; your code
has to call it at regular intervals. There is also a way to register a callback that is invoked
when cancellation is requested. The callback approach is more about interoperating
with other cancellation systems, so we’ll cover that in Recipe 9.9.

See Also
Recipe 9.4 covers passing tokens to async code.

Recipe 9.5 covers passing tokens to parallel code.

Recipe 9.6 covers using tokens with reactive code.

Recipe 9.7 covers passing tokens to dataflow meshes.

Recipe 9.9 covers using callbacks instead of polling to respond to cancellation requests.

Recipe 9.1 covers issuing a cancellation request.

9.3. Canceling Due to Timeouts
Problem
You have some code that needs to stop running after a timeout.

Solution
Cancellation is a natural solution for timeout situations. A timeout is just one type of
cancellation request. The code that needs to be canceled merely observes the cancella‐
tion token just like any other cancellation; it should neither know nor care that the
cancellation source is a timer.

NET 4.5 introduces some convenience methos for cancellation token sources that au‐
tomatically issue a cancel request based on a timer. You can pass the timeout into the
constructor: 
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async Task IssueTimeoutAsync()
{
    var cts = new CancellationTokenSource(TimeSpan.FromSeconds(5));
    var token = cts.Token;
    await Task.Delay(TimeSpan.FromSeconds(10), token);
}

Alternatively, if you already have a CancellationTokenSource instance, you can start
a timeout for that instance:

async Task IssueTimeoutAsync()
{
    var cts = new CancellationTokenSource();
    var token = cts.Token;
    cts.CancelAfter(TimeSpan.FromSeconds(5));
    await Task.Delay(TimeSpan.FromSeconds(10), token);
}

The constructor is not available on .NET 4.0, but the CancelAfter method is provided
by the Microsoft.Bcl.Async NuGet library for that platform.

Discussion
Whenever you need to execute code with a timeout, you should use CancellationTo
kenSource and CancelAfter (or the constructor). There are other ways to do the same
thing, but using the existing cancellation system is the easiest and most efficient option.

Remember that the code to be canceled needs to observe the cancellation token; it is
not possible to easily cancel uncancelable code.

See Also
Recipe 9.4 covers passing tokens to async code.

Recipe 9.5 covers passing tokens to parallel code.

Recipe 9.6 covers using tokens with reactive code.

Recipe 9.7 covers passing tokens to dataflow meshes.

9.4. Canceling async Code
Problem
You are using async code and need to support cancellation.
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Solution
The easiest way to support cancellation in asynchronous code is to just pass the Can
cellationToken through to the next layer. This example code performs an asynchro‐
nous delay and then returns a value; it supports cancellation by just passing the token
to Task.Delay:

public async Task<int> CancelableMethodAsync(CancellationToken cancellationToken)
{
    await Task.Delay(TimeSpan.FromSeconds(2), cancellationToken);
    return 42;
}

Many asynchronous APIs support CancellationToken, so enabling cancellation your‐
self is usually a simple matter of taking a token and passing it along. As a general rule,
if your method calls APIs that take CancellationToken, then your method should also
take a CancellationToken and pass it to every API that supports it.

Discussion
Unfortunately, there are some methods that do not support cancellation. When you are
in this situation, there’s no easy solution. It is not possible to safely stop arbitrary code
unless it is wrapped in a separate executable. In this case, you do always have the option
of pretending to cancel the operation by ignoring the result.

Cancellation should be provided as an option whenever possible. This is because proper
cancellation at a higher level depends on proper cancellation at the lower level. So, when
you are writing your own async methods, try your best to include support for cancel‐
lation; you never know what higher-level method will want to call yours, and it might
need cancellation.

See Also
Recipe 9.1 covers issuing a cancellation request.

Recipe 9.3 covers using cancellation as a timeout.

9.5. Canceling Parallel Code
Problem
You are using parallel code and need to support cancellation.
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Solution
The easiest way to support cancellation is to pass the CancellationToken through to
the parallel code. Parallel methods support this by taking a ParallelOptions in‐
stance. You can set the CancellationToken on a ParallelOptions instance in the fol‐
lowing manner:

static void RotateMatrices(IEnumerable<Matrix> matrices, float degrees,
    CancellationToken token)
{
    Parallel.ForEach(matrices,
        new ParallelOptions { CancellationToken = token },
        matrix => matrix.Rotate(degrees));
}

Alternatively, it is possible to observe the CancellationToken directly in your loop
body:

static void RotateMatrices2(IEnumerable<Matrix> matrices, float degrees,
    CancellationToken token)
{
    // Warning: not recommended; see below.
    Parallel.ForEach(matrices, matrix =>
    {
        matrix.Rotate(degrees);
        token.ThrowIfCancellationRequested();
    });
}

However, the alternative method is more work and does not compose as well; with the
alternate method, the parallel loop will wrap the OperationCanceledException within
an AggregateException. Also, if you pass the CancellationToken as part of a Paral
lelOptions instance, the Parallel class may make more intelligent decisions about
how often to check the token. For these reasons, it is best to pass the token as an option.

Parallel LINQ (PLINQ) also has built-in support for cancellation, via the WithCancel
lation operator:

static IEnumerable<int> MultiplyBy2(IEnumerable<int> values,
    CancellationToken cancellationToken)
{
    return values.AsParallel()
        .WithCancellation(cancellationToken)
        .Select(item => item * 2);
}

Discussion
Supporting cancellation for parallel work is important for a good user experience. If
your application is doing parallel work, it will use a large amount of CPU at least for a

9.5. Canceling Parallel Code | 127



short time. High CPU usage is something that users notice, even if it doesn’t interfere
with other applications on the same machine. So, I recommend supporting cancellation
whenever you do parallel computation (or any other CPU-intensive work), even if the
total time spent with high CPU usage is not extremely long.

See Also
Recipe 9.1 covers issuing a cancellation request.

9.6. Canceling Reactive Code
Problem
You have some reactive code, and you need it to be cancelable.

Solution
The Reactive Extensions library has a notion of a subscription to an observable
stream. Your code can dispose of the subscription to unsubscribe from the stream. In
many cases, this is sufficient to logically cancel the stream. For example, the following
code subscribes to mouse clicks when one button is pressed and unsubscribes (cancels
the subscription) when another button is pressed:

private IDisposable _mouseMovesSubscription;

private void StartButton_Click(object sender, RoutedEventArgs e)
{
    var mouseMoves = Observable
        .FromEventPattern<MouseEventHandler, MouseEventArgs>(
            handler => (s, a) => handler(s, a),
            handler => MouseMove += handler,
            handler => MouseMove -= handler)
        .Select(x => x.EventArgs.GetPosition(this));
    _mouseMovesSubscription = mouseMoves.Subscribe(val =>
    {
        MousePositionLabel.Content = "(" + val.X + ", " + val.Y + ")";
    });
}

private void CancelButton_Click(object sender, RoutedEventArgs e)
{
    if (_mouseMovesSubscription != null)
        _mouseMovesSubscription.Dispose();
}

However, it can be really convenient to make Rx work with the CancellationToken
Source/CancellationToken system that everything else uses for cancellation. The rest
of this recipe covers ways that Rx interacts with CancellationToken.
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The first major use case is when the observable code is wrapped in asynchronous code.
We considered this situation in Recipe 7.5, and now we want to add CancellationTo
ken support. In general, the easiest way to do this is to perform all operations using
reactive operators and then call ToTask to convert the last resulting element to an
awaitable task. The following code shows how to asynchronously take the last element
in a sequence:

CancellationToken cancellationToken = ...
IObservable<int> observable = ...
int lastElement = await observable.TakeLast(1).ToTask(cancellationToken);
// or: int lastElement = await observable.ToTask(cancellationToken);

Taking the first element is very similar; we just modify the observable before calling
ToTask:

CancellationToken cancellationToken = ...
IObservable<int> observable = ...
int firstElement = await observable.Take(1).ToTask(cancellationToken);

Asynchronously converting the entire observable sequence to a task is likewise similar:

CancellationToken cancellationToken = ...
IObservable<int> observable = ...
IList<int> allElements = await observable.ToList().ToTask(cancellationToken);

Finally, let’s consider the reverse situation. We’ve looked at several ways to handle sit‐
uations where Rx code responds to CancellationToken—that is, where a Cancella
tionTokenSource cancel request is translated into an unsubscription (a Dispose). We
can also go the other way: issuing a cancellation request as a response to disposal.

The FromAsync, StartAsync, and SelectMany operators all support cancellation, as we
saw in Recipe 7.6. This covers the vast majority of use cases. Rx also provides a Cancel
lationDisposable type, which we can use directly as such:

using (var cancellation = new CancellationDisposable())
{
    CancellationToken token = cancellation.Token;
    // Pass the token to methods that respond to it.
}
// At this point, the token is canceled.

Discussion
Rx has its own notion of cancellation: unsubscription. This recipe looked at several ways
to make Rx play nicely with the universal cancellation framework introduced in .NET
4.0. As long as you are in the Rx world portion of your code, just use the Rx subscription/
unsubscription system; it’s cleanest if you only introduce CancellationToken support
at the boundaries.
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See Also
Recipe 7.5 covers asynchronous wrappers around Rx code (without cancellation
support).

Recipe 7.6 covers Rx wrappers around asynchronous code (with cancellation support).

Recipe 9.1 covers issuing a cancellation request.

9.7. Canceling Dataflow Meshes
Problem
You are using dataflow meshes and need to support cancellation.

Solution
The best way to support cancellation in your own code is to pass the CancellationTo
ken through to a cancelable API. Each block in a dataflow mesh supports cancellation
as a part of its DataflowBlockOptions. If we want to extend our custom dataflow block
with cancellation support, we just set the CancellationToken property on the block
options:

IPropagatorBlock<int, int> CreateMyCustomBlock(
    CancellationToken cancellationToken)
{
    var blockOptions = new ExecutionDataflowBlockOptions
    {
        CancellationToken = cancellationToken
    };
    var multiplyBlock = new TransformBlock<int, int>(item => item * 2,
        blockOptions);
    var addBlock = new TransformBlock<int, int>(item => item + 2,
        blockOptions);
    var divideBlock = new TransformBlock<int, int>(item => item / 2,
        blockOptions);

    var flowCompletion = new DataflowLinkOptions
    {
        PropagateCompletion = true
    };
    multiplyBlock.LinkTo(addBlock, flowCompletion);
    addBlock.LinkTo(divideBlock, flowCompletion);

    return DataflowBlock.Encapsulate(multiplyBlock, divideBlock);
}

In the example, I applied the CancellationToken to every block in the mesh. This isn’t
strictly necessary. Since I’m also propagating completion along the links, I could just
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apply it to the first block and allow it to propagate through. Cancellations are considered
a special form of error, so the blocks further down the pipeline would be completed with
an error as that error propagates through. However, if I am canceling a mesh, I may as
well cancel every block simultaneously; so I usually just set the CancellationToken
option on every block.

Discussion
In dataflow meshes, cancellation is not a form of flush. When a block is canceled, it
drops all its input and refuses to take any new items. So if you cancel a block while it’s
running, you will lose data.

See Also
Recipe 9.1 covers issuing a cancellation request.

9.8. Injecting Cancellation Requests
Problem
You have a layer of your code that needs to respond to cancellation requests and also
issue its own cancellation requests to the next layer.

Solution
The .NET 4.0 cancellation system has built-in support for this scenario, known as linked
cancellation tokens. A cancellation token source can be created linked to one (or many)
existing tokens. When you create a linked cancellation token source, the resulting token
is canceled when any of the existing tokens is canceled or when the linked source is
explicitly canceled.

The following code performs an asynchronous HTTP request. The token passed into
this method represents cancellation requested by the end user, and this method also
applies a timeout to the request:

async Task<HttpResponseMessage> GetWithTimeoutAsync(string url,
    CancellationToken cancellationToken)
{
    var client = new HttpClient();

    using (var cts = CancellationTokenSource
        .CreateLinkedTokenSource(cancellationToken))
    {
        cts.CancelAfter(TimeSpan.FromSeconds(2));
        var combinedToken = cts.Token;
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        return await client.GetAsync(url, combinedToken);
    }
}

The resulting combinedToken is canceled when either the user cancels the existing
cancellationToken or when the linked source is canceled by CancelAfter.

Discussion
Although our example only used a single CancellationToken source, the CreateLin
kedTokenSource method can take any number of cancellation tokens as parameters.
This allows you to create a single combined token from which you can implement your
logical cancellation. For example, ASP.NET provides one token that represents the re‐
quest timing out (HttpRequest.TimedOutToken) and another token that represents the
user disconnecting (HttpResponse.ClientDisconnectedToken); handler code may
create a linked token that responds to either of these cancellation requests.

One thing to keep in mind is the lifetime of the linked cancellation token source. Our
previous example is the usual use case, where one or more cancellation tokens are passed
into our method, which then links them together and passes them on as a combined
token. Note that our example code is using the using statement, which ensures that the
linked cancellation token source is disposed of when the operation is complete (and the
combined token is no longer being used). Consider what would happen if we did not
dispose of the linked cancellation token source: it is possible that this method may be
called multiple times with the same (long-lived) existing token, in which case we would
link a new token source each time the method is invoked. Even after the HTTP requests
complete (and nothing is using the combined token), that linked source is still attached
to the existing token. To prevent memory leaks like this, dispose of the linked cancel‐
lation token source when you no longer need the combined token.

See Also
Recipe 9.1 covers issuing cancellation requests in general.

Recipe 9.3 covers using cancellation as a timeout.

9.9. Interop with Other Cancellation Systems
Problem
You have some external or legacy code with its own notion of cancellation, and you want
to control it using a standard CancellationToken.
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Solution
The CancellationToken has two primary ways to respond to a cancellation request:
polling (which we covered in Recipe 9.2) and callbacks (the subject of this recipe).
Polling is normally used for CPU-bound code, such as data processing loops; callbacks
are normally used in all other scenarios. You can register a callback for a token using
the CancellationToken.Register method.

For example, let’s say we’re wrapping the System.Net.NetworkInformation.Ping type
and we want to be able to cancel a ping. The Ping class already has a Task-based API
but does not support CancellationToken. Instead, the Ping type has its own SendA
syncCancel method that we can use to cancel a ping. So, we register a callback that
invokes that method, as follows:

async Task<PingReply> PingAsync(string hostNameOrAddress,
    CancellationToken cancellationToken)
{
    var ping = new Ping();
    using (cancellationToken.Register(() => ping.SendAsyncCancel()))
    {
        return await ping.SendPingAsync(hostNameOrAddress);
    }
}

Now, when a cancellation is requested, it will invoke the SendAsyncCancel method for
us, canceling the SendPingAsync method.

Discussion
The CancellationToken.Register method can be used to interoperate with any kind
of alternative cancellation system. However, do bear in mind that when a method takes
a CancellationToken, a cancellation request should only cancel that one operation.
Some alternative cancellation systems implement a cancel by closing some resource,
which can cancel multiple operations; this kind of cancellation system does not map
well to a CancellationToken. If you do decide to wrap that kind of cancellation in a
CancellationToken, you should document its unusual cancellation semantics.

Keep in mind the lifetime of the callback registration. The Register method returns a
disposable that should be disposed of when that callback is no longer needed. The pre‐
ceding example code uses a using statement to clean up when the asynchronous oper‐
ation completes. If we did not have that using statement, then each time we call that
example code with the same (long-lived) CancellationToken, it would add another
callback (which in turn keeps the Ping object alive). To avoid memory and resource
leaks, dispose of the callback registration when you no longer need the callback.

9.9. Interop with Other Cancellation Systems | 133



See Also
Recipe 9.2 covers responding to a cancellation token by polling rather than callbacks.

Recipe 9.1 covers issuing cancellation requests in general. 
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CHAPTER 10

Functional-Friendly OOP

Modern programs require asynchronous programming; these days servers must scale
better than ever, and end-user applications must be more reponsive than ever. Devel‐
opers are finding that they must learn asynchronous programming, and as they explore
this world, they find that it often clashes with the traditional object-oriented program‐
ming that they’re accustomed to.

The core reason for this is because asynchronous programming is functional. By “func‐
tional,” I don’t mean, “it works”; I mean it’s a functional style of programming instead
of an procedural style of programming. A lot of developers learned basic functional
programming in college and have hardly touched it since. If code like (car (cdr '(3
5 7))) gives you a chill as repressed memories come flooding back, then you may be
in that category. But don’t fear; modern asynchronous programming is not that hard
once you get used to it.

The major breakthrough with async is that you can still think procedurally while pro‐
gramming asynchronously. This makes asynchronous methods easier to write and un‐
derstand. However, under the covers, asynchronous code is still functional in nature,
and this causes some problems when people try to force async methods into classical
object-oriented designs. The recipes in this chapter deal with those friction points where
asynchronous code clashes with object-oriented programming.

These friction points are especially noticeable when translating an existing OOP code
base into an async-friendly code base.

10.1. Async Interfaces and Inheritance
Problem
You have a method in your interface or base class that you want to make asynchronous.
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Solution
The key to understanding this problem and its solution is to realize that async is an
implementation detail. It is not possible to mark interface methods or abstract methods
as async. However, you can define a method with the same signature as an async
method, just without the async keyword.

Remember that types are awaitable, not methods. You can await a Task returned by a
method, whether or not that method is actually async. So, an interface or abstract
method can just return a Task (or Task<T>), and the return value of that method is
awaitable.

The following code defines an interface with an asynchronous method (without the
async keyword), an implementation of that interface (with async), and an independent
method that consumes a method of the interface (via await):

interface IMyAsyncInterface
{
    Task<int> CountBytesAsync(string url);
}

class MyAsyncClass : IMyAsyncInterface
{
    public async Task<int> CountBytesAsync(string url)
    {
        var client = new HttpClient();
        var bytes = await client.GetByteArrayAsync(url);
        return bytes.Length;
    }
}

static async Task UseMyInterfaceAsync(IMyAsyncInterface service)
{
    var result = await service.CountBytesAsync("http://www.example.com");
    Trace.WriteLine(result);
}

This same pattern works for abstract methods in base classes.

An asynchronous method signature only means that the implementation may be asyn‐
chronous. It is possible for the actual implementation to be synchronous if it has no real
asynchronous work to do. For example, a test stub may implement the same interface
(without async) by using something like FromResult:

class MyAsyncClassStub : IMyAsyncInterface
{
    public Task<int> CountBytesAsync(string url)
    {
        return Task.FromResult(13);
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    }
}

Discussion
At the time of this writing (2014), async and await are still pretty new. As asynchronous
methods become more common, asynchronous methods on interfaces and base classes
will become more common as well. They’re not that hard to work with if you keep in
mind that it is the return type that is awaitable (not the method) and that an asynchro‐
nous method definition may be implemented either asynchronously or synchronously.

See Also
Recipe 2.2 covers returning a completed task, implementing an asynchronous method
signature with synchrononus code.

10.2. Async Construction: Factories
Problem
You are coding a type that requires some asynchronous work to be done in its con‐
structor.

Solution
Constructors cannot be async, nor can they use the await keyword. It would certainly
be useful to await in a constructor, but this would change the C# language considerably.

One possibility is to have a constructor paired with an async initialization method, so
the type could be used like this:

var instance = new MyAsyncClass();
await instance.InitializeAsync();

However, there are disadvantages to this approach. It can be easy to forget to call the
InitializeAsync method, and the instance is not usable immediately after it was con‐
structed.

A better solution is to make the type its own factory. The following type illustrates the
asynchronous factory method pattern:

class MyAsyncClass
{
    private MyAsyncClass()
    {
    }

    private async Task<MyAsyncClass> InitializeAsync()
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    {
        await Task.Delay(TimeSpan.FromSeconds(1));
        return this;
    }

    public static Task<MyAsyncClass> CreateAsync()
    {
        var result = new MyAsyncClass();
        return result.InitializeAsync();
    }
}

The constructor and InitializeAsync method are private so that other code cannot
possibly misuse them; the only way to create an instance is via the static CreateAsync
factory method, and calling code cannot access the instance until after the initialization
is complete.

Other code can create an instance like this:

var instance = await MyAsyncClass.CreateAsync();

Discussion
The primary advantage of this pattern is that there is no way that other code can get an
uninitialized instance of MyAsyncClass. That’s why I prefer this pattern over other ap‐
proaches whenever I can use it.

Unfortunately, this approach does not work in some scenarios—in particular, when your
code is using a Dependency Injection provider. As of this writing (2014), no major
Dependency Injection or Inversion of Control library works with async code. There
are a couple of alternatives that you can consider in this case.

If the instance you’re creating is actually a shared resource, then you can use the asyn‐
chronous lazy type discussed in Recipe 13.1. Otherwise, you can use the asynchronous
initialization pattern discussed in Recipe 10.3.

Here’s an example of what not to do:

class MyAsyncClass
{
    public MyAsyncClass()
    {
        InitializeAsync();
    }

    // BAD CODE!!
    private async void InitializeAsync()
    {
        await Task.Delay(TimeSpan.FromSeconds(1));
    }
}
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At first glance, this seems like a reasonable approach: you get a regular constructor that
kicks off an asynchronous operation; however, there are several drawbacks that are due
to the use of async void. The first problem is that when the constructor completes, the
instance is still being asynchronously initialized, and there isn’t an obvious way to de‐
termine when the asynchronous initialization has completed. The second problem is
with error handling: any exceptions raised from InitializeAsync can’t be caught by
any catch clauses surrounding the object construction.

See Also
Recipe 10.3 covers the asynchronous initilization pattern, a way of doing asynchronous
construction that works with Dependency Injection/Inversion of Control containers.

Recipe 13.1 covers asynchronous lazy initialization, which is a viable solution if the
instance is conceptually a shared resource or service.

10.3. Async Construction: The Asynchronous Initialization
Pattern
Problem
You are coding a type that requires some asynchronous work to be done in its con‐
structor, but you cannot use the asynchronous factory pattern (Recipe 10.2) because the
instance is created via reflection (e.g., a Dependency Injection/Inversion of Control
library, data binding, Activator.CreateInstance, etc.).

Solution
When you have this scenario, you have to return an uninitialized instance, but you can
mitigate this by applying a common pattern: the asynchronous initialization pattern.
Every type that requires asynchronous initialization should define a property as such:

Task Initialization { get; }

I usually like to define this in a marker interface for types that require asynchronous
initialization:

/// <summary>
/// Marks a type as requiring asynchronous initialization
/// and provides the result of that initialization.
/// </summary>
public interface IAsyncInitialization
{
    /// <summary>
    /// The result of the asynchronous initialization of this instance.
    /// </summary>
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    Task Initialization { get; }
}

When you implement this pattern, you should start the initialization (and assign the
Initialization property) in the constructor. The results of the asynchronous initial‐
ization (including any exceptions) are exposed via that Initialization property. Here’s
an example implementation of a simple type using asynchronous initialization:

class MyFundamentalType : IMyFundamentalType, IAsyncInitialization
{
    public MyFundamentalType()
    {
        Initialization = InitializeAsync();
    }

    public Task Initialization { get; private set; }

    private async Task InitializeAsync()
    {
        // Asynchronously initialize this instance.
        await Task.Delay(TimeSpan.FromSeconds(1));
    }
}

If you are using a Dependency Injection/Inversion of Control library, you can create
and initialize an instance of this type using code like this:

IMyFundamentalType instance = UltimateDIFactory.Create<IMyFundamentalType>();
var instanceAsyncInit = instance as IAsyncInitialization;
if (instanceAsyncInit != null)
    await instanceAsyncInit.Initialization;

We can extend this pattern to allow composition of types with asynchronous initiali‐
zation. The following example defines another type that depends on an IMyFundamen
talType that we defined above:

class MyComposedType : IMyComposedType, IAsyncInitialization
{
    private readonly IMyFundamentalType _fundamental;

    public MyComposedType(IMyFundamentalType fundamental)
    {
        _fundamental = fundamental;
        Initialization = InitializeAsync();
    }

    public Task Initialization { get; private set; }

    private async Task InitializeAsync()
    {
        // Asynchronously wait for the fundamental instance to initialize,
        //  if necessary.
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        var fundamentalAsyncInit = _fundamental as IAsyncInitialization;
        if (fundamentalAsyncInit != null)
            await fundamentalAsyncInit.Initialization;

        // Do our own initialization (synchronous or asynchronous).
        ...
    }
}

The composed type waits for all of its components to initialize before it proceeds with
its initialization. The rule to follow is that every component should be initialized by the
end of InitializeAsync. This ensures that all dependent types are initialized as part of
the composed initialization. Any exceptions from a component initialization are propa‐
gated to the composed type’s initialization.

Discussion
If you can, I recommend using asynchronous factories (Recipe 10.2) or asynchronous
lazy initialization (Recipe 13.1) instead of this solution. Those are the best approaches
because you never expose an uninitialized instance. However, if your instances are cre‐
ated by Dependency Injection/Inversion of Control, data binding, etc., then you are
forced to expose an uninitialized instance, and in that case I recommend using the
asynchronous initialization pattern in this recipe.

Remember from when we looked at asynchronous interfaces (Recipe 10.1) that an
asynchronous method signature only means that the method may be asynchronous.
The MyComposedType.InitializeAsync code above is a good example of this: if the
IMyFundamentalType instance does not also implement IAsyncInitialization and
MyComposedType has no asynchronous initialization of its own, then its InitializeA
sync method will actually complete synchronously.

The code for checking whether an instance implements IAsyncInitialization and
initializing it is a bit awkward, and it becomes more so when you have a composed type
that depends on a larger number of components. It’s easy enough to create a helper
method that can be used to simplify the code:

public static class AsyncInitialization
{
    static Task WhenAllInitializedAsync(params object[] instances)
    {
        return Task.WhenAll(instances
            .OfType<IAsyncInitialization>()
            .Select(x => x.Initialization));
    }
}

You can call InitializeAllAsync and pass in whatever instances you want initialized;
the method will ignore any instances that do not implement IAsyncInitialization.
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The initialization code for a composed type that depends on three injected instances
can then look like this:

private async Task InitializeAsync()
{
   // Asynchronously wait for all 3 instances to initialize, if necessary.
   await AsyncInitialization.WhenAllInitializedAsync(_fundamental,
       _anotherType, _yetAnother);

   // Do our own initialization (synchronous or asynchronous).
   ...
}

See Also
Recipe 10.2 covers asynchronous factories, which are a way to do asynchronous con‐
struction without exposing uninitialized instances.

Recipe 13.1 covers asynchronous lazy initialization, which can be used if the instance
is a shared resource or service.

Recipe 10.1 covers asynchronous interfaces.

10.4. Async Properties
Problem
You have a property that you want to make async. The property is not used in data
binding.

Solution
This is a problem that often comes up when converting existing code to use async; in
this situation, you have a property whose getter invokes a method that is now asyn‐
chronous. However, there is no such thing as an “asynchronous property.” It’s not pos‐
sible to use the async keyword with a property, and that’s a good thing. Property getters
should return current values; they should not be kicking off background operations:

// What we think we want (does not compile).
public int Data
{
    async get
    {
        await Task.Delay(TimeSpan.FromSeconds(1));
        return 13;
    }
}
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When you find that your code wants an “asynchronous property,” what your code really
needs is something a little different. The solution depends on whether your property
value needs to be evaluated once or multiple times; you have a choice between these
semantics:

• A value that is asynchronously evaluated each time it is read
• A value that is asynchronously evaluated once and is cached for future access

If your “asynchronous property” needs to kick off a new (asynchronous) evaluation
each time it is read, then it is not a property. It is actually a method in disguise. If you
encountered this situation when converting synchronous code to asynchronous, then
it’s time to admit that the original design was actually incorrect; the property really
should have been a method all along:

// As an asynchronous method.
public async Task<int> GetDataAsync()
{
    await Task.Delay(TimeSpan.FromSeconds(1));
    return 13;
}

It is possible to return a Task<int> directly from a property, like this:

// As a Task-returning property.
// This API design is questionable.
public Task<int> Data
{
    get { return GetDataAsync(); }
}

private async Task<int> GetDataAsync()
{
    await Task.Delay(TimeSpan.FromSeconds(1));
    return 13;
}

However, I do not recommend this approach. If every access to a property is going to
kick off a new asynchronous operation, then that “property” should really be a method.
The fact that it’s an asynchronous method makes it clearer that a new asynchronous
operation is initiated every time, so the API is not misleading. Recipe 10.3 and
Recipe 10.6 do use task-returning properties, but those properties apply to the instance
as a whole; they do not start a new asynchronous operation every time they are read.

The preceding solution covers the scenario where the property value is evaluated every
time it is retrieved. The other scenario is that the “asynchronous property” should only
kick off a single (asynchronous) evaluation and that the resulting value should be cached
for future use. In this case, you can use asynchronous lazy initialization. We’ll cover this
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in detail in Recipe 13.1, but in the meantime, here’s an example of what the code would
look like:

// As a cached value.
public AsyncLazy<int> Data
{
    get { return _data; }
}

private readonly AsyncLazy<int> _data =
    new AsyncLazy<int>(async () =>
    {
        await Task.Delay(TimeSpan.FromSeconds(1));
        return 13;
    });

The code will only execute the asynchronous evaluation once and then return that same
value to all callers. Calling code looks like this:

int value = await instance.Data;

In this case, the property syntax is appropriate since there is only one evaluation hap‐
pening.

Discussion
One of the important questions to ask yourself is whether reading the property should
start a new asynchronous operation; if the answer is “yes,” then use an asynchronous
method instead of a property. If the property should act as a lazy-evaluated cache, then
use asynchronous intiailization (see Recipe 13.1). We didn’t cover properties that are
used in data binding; that scenario will be covered in Recipe 13.3.

When you’re converting a synchronous property to an “asynchronous property,” here’s
an example of what not to do:

private async Task<int> GetDataAsync()
{
    await Task.Delay(TimeSpan.FromSeconds(1));
    return 13;
}

public int Data
{
    // BAD CODE!!
    get { return GetDataAsync().Result; }
}

You don’t want to use Result or Wait to force asynchronous code to be synchronous.
In GUI and ASP.NET platforms, such code can easily cause deadlocks. Even if you work
around the deadlocks, you would still be exposing a misleading API: a property getter
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(which should be a fast, synchronous operation) is actually a blocking operation. These
problems with blocking are discussed in more detail in Chapter 1.

While we’re on the subject of properties in async code, it’s worth thinking about how
state relates to asynchronous code. This is especially true if you’re converting a syn‐
chronous code base to asynchronous. Consider any state that you expose in your API
(e.g., via properties); for each piece of state, ask yourself: what is the current state of an
object that has an asynchronous operation in progress? There’s no right answer, but it’s
important to think about the semantics you want and to document them.

For example, consider Stream.Position, which represents the current offset of the
stream pointer. With the synchronous API, when you call Stream.Read or
Stream.Write, the actual reading/writing is done and Stream.Position is updated to
reflect the new position before the Read or Write method returns. The semantics are
clear for synchronous code.

Now, consider Stream.ReadAsync and Stream.WriteAsync: when should Stream.Po
sition be updated? When the read/write operation is complete, or before it actually
happens? If it’s updated before the operation completes, is it updated synchronously by
the time ReadAsync/WriteAsync returns, or could it happen shortly after that?

This is a great example of how a property that exposes state has perfectly clear semantics
for synchronous code but no obviously correct semantics for asynchronous code. It’s
not the end of the world—you just need to think about your entire API when async-
enabling your types and document the semantics you choose.

See Also
Recipe 13.1 covers asynchronous lazy initialization in detail.

Recipe 13.3 covers “asynchronous properties” that need to support data binding.

10.5. Async Events
Problem
You have an event that you need to use with handlers that might be async, and you need
to detect whether the event handlers have completed. Note that this is a rare situation
when raising an event; usually, when you raise an event, you don’t care when the handlers
complete.

Solution
It’s not feasible to detect when async void handlers have returned, so you need some
alternative way to detect when the asynchronous handlers have completed. The
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Windows Store platform introduced a concept called deferrals that we can use to track
asynchronous handlers. An asynchronous handler allocates a deferral before its first
await, and later notifies the deferral when it is complete. Synchronous handlers do not
need to use deferrals.

The Nito.AsyncEx library includes a type called a DeferralManager, which is used by
the component raising the event. This deferral manager then permits event handlers to
allocate deferrals and keeps track of when all the deferrals have completed.

For each of your events where you need to wait for the handlers to complete, you first
extend your event arguments type as such:

public class MyEventArgs : EventArgs
{
  private readonly DeferralManager _deferrals = new DeferralManager();

  ... // Your own constructors and properties.

  public IDisposable GetDeferral()
  {
    return _deferrals.GetDeferral();
  }

  internal Task WaitForDeferralsAsync()
  {
    return _deferrals.SignalAndWaitAsync();
  }
}

When you’re dealing with asynchronous event handlers, it’s best to make your event
arguments type threadsafe. The easiest way to do this is to make it immutable (i.e., have
all its properties be read-only).

Then, each time you raise the event, you can (asynchronously) wait for all asynchronous
event handlers to complete. The following code will return a completed task if there are
no handlers; otherwise, it will create a new instance of your event arguments type, pass
it to the handlers, and wait for any asynchronous handlers to complete:

public event EventHandler<MyEventArgs> MyEvent;

private Task RaiseMyEventAsync()
{
  var handler = MyEvent;
  if (handler == null)
    return Task.FromResult(0);

  var args = new MyEventArgs(...);
  handler(this, args);
  return args.WaitForDeferralsAsync();
}
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Asynchronous event handlers can then use the deferral within a using block; the deferral
notifies the deferral manager when it is disposed of:

async void AsyncHandler(object sender, MyEventArgs args)
{
    using (args.GetDeferral())
    {
        await Task.Delay(TimeSpan.FromSeconds(2));
    }
}

This is slightly different than how Windows Store deferrals work. In the Windows Store
API, each event that needs deferrals defines its own deferral type, and that deferral type
has an explicit Complete method rather than being IDisposable.

Discussion
There are logically two different kinds of events used in .NET, with very different se‐
mantics. I call these notification events and command events to distinguish them; this is
not official terminology, just some terms that I chose for clarity. A notification event is
an event that is raised to notify other components of some situation. A notification is
purely one-way; the sender of the event does not care whether there are any receivers
of the event. With notifications, the sender and receiver can be entirely disconnected.
Most events are notification events; one example is a button click.

In contrast, a command event is an event that is raised to implement some functionality
on behalf of the sending component. Command events are not “events” in the true sense
of the term, though they are often implemented as .NET events. The sender of a com‐
mand must wait until the receiver handles it before moving on. If you use events to
implement the Visitor pattern, then those are command events. Lifecycle events are also
command events, so ASP.NET page lifecycle events and Windows Store events, such as
Application.Suspending fall into this category. Any event that is actually an imple‐
mentation is also a command event (e.g., BackgroundWorker.DoWork).

Notification events do not require any special code to allow asynchronous handlers; the
event handlers can be async void and they work just fine. When the event sender raises
the event, the asynchronous event handlers aren’t completed immediately, but that
doesn’t matter because they’re just notification events. So, if your event is a notification
event, the grand total amount of work you need to do to support asynchronous handlers
is: nothing.

Command events are a different story. When you have a command event, you need a
way to detect when the handlers have completed. The preceding solution with deferrals
should only be used for command events.
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The DeferralManager type is in the Nito.AsyncEx NuGet package.

See Also
Chapter 2 covers the basics of asynchronous programming.

10.6. Async Disposal
Problem
You have a type that allows asynchronous operations but also needs to allow disposal
of its resources.

Solution
There are a couple of options for dealing with existing operations when disposing of an
instance: you can either treat the disposal as a cancellation request that is applied to all
existing operations, or you can implement an actual asynchronous completion.

Treating disposal as a cancellation has a historic precedence on Windows; types such
as file streams and sockets cancel any existing reads or writes when they are closed. We
can do something very similar in .NET by defining our own private CancellationTo
kenSource and passing that token to our internal operations. With this code, Dispose
will cancel the operations but will not wait for those operations to complete:

class MyClass : IDisposable
{
    private readonly CancellationTokenSource _disposeCts =
        new CancellationTokenSource();

    public async Task<int> CalculateValueAsync()
    {
        await Task.Delay(TimeSpan.FromSeconds(2), _disposeCts.Token);
        return 13;
    }

    public void Dispose()
    {
        _disposeCts.Cancel();
    }
}
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The preceding code shows the basic pattern around Dispose. In a real-world app, we
should also put in checks that the object is not already disposed of and also allow the
user to supply her own CancellationToken (using the technique from Recipe 9.8):

public async Task<int> CalculateValueAsync(CancellationToken cancellationToken)
{
    using (var combinedCts = CancellationTokenSource
        .CreateLinkedTokenSource(cancellationToken, _disposeCts.Token))
    {
        await Task.Delay(TimeSpan.FromSeconds(2), combinedCts.Token);
        return 13;
    }
}

Calling code will have any existing operations canceled when Dispose is called:

async Task Test()
{
    Task<int> task;
    using (var resource = new MyClass())
    {
        task = CalculateValueAsync();
    }

    // Throws OperationCanceledException.
    var result = await task;
}

For some types, implementing Dispose as a cancellation request works just fine (e.g.,
HttpClient has these semantics). However, other types need to know when all the op‐
erations have completed. For these types, you need some kind of asynchronous com‐
pletion.

Asynchronous completion is very similar to asynchronous initialization (see
Recipe 10.3): there isn’t much in the way of official guidance, so I’ll describe one possible
pattern, which is based on how TPL Dataflow blocks work. The important parts of
asynchronous completion can be wrapped up in an interface:

/// <summary>
/// Marks a type as requiring asynchronous completion and provides
/// the result of that completion.
/// </summary>
interface IAsyncCompletion
{
    /// <summary>
    /// Starts the completion of this instance. This is conceptually similar
    /// to <see cref="IDisposable.Dispose"/>.
    /// After you call this method, you should not invoke any other members of
    /// this instance except <see cref="Completion"/>.
    /// </summary>
    void Complete();
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    /// <summary>
    /// Gets the result of the completion of this instance.
    /// </summary>
    Task Completion { get; }
}

The implementing type can use code like this:

class MyClass : IAsyncCompletion
{
    private readonly TaskCompletionSource<object> _completion =
        new TaskCompletionSource<object>();
    private Task _completing;

    public Task Completion
    {
        get { return _completion.Task; }
    }

    public void Complete()
    {
        if (_completing != null)
            return;
        _completing = CompleteAsync();
    }

    private async Task CompleteAsync()
    {
        try
        {
            ... // Asynchronously wait for any existing operations.
        }
        catch (Exception ex)
        {
            _completion.TrySetException(ex);
        }
        finally
        {
            _completion.TrySetResult(null);
        }
    }
}

Calling code is not exactly elegant; we can’t use the using statement because Dispose
must be asynchronous. However, we can define a pair of helper methods that allow us
to do something similar to using:

static class AsyncHelpers
{
    public static async Task Using<TResource>(Func<TResource> construct,
        Func<TResource, Task> process) where TResource : IAsyncCompletion
    {
        // Create the resource we're using.
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        var resource = construct();

        // Use the resource, catching any exceptions.
        Exception exception = null;
        try
        {
            await process(resource);
        }
        catch (Exception ex)
        {
            exception = ex;
        }

        // Complete (logically dispose) the resource.
        resource.Complete();
        await resource.Completion;

        // Re-throw the process delegate exception if necessary.
        if (exception != null)
            ExceptionDispatchInfo.Capture(exception).Throw();
    }

    public static async Task<TResult> Using<TResource, TResult>(
        Func<TResource> construct, Func<TResource,
        Task<TResult>> process) where TResource : IAsyncCompletion
    {
        // Create the resource we're using.
        var resource = construct();

        // Use the resource, catching any exceptions.
        Exception exception = null;
        TResult result = default(TResult);
        try
        {
            result = await process(resource);
        }
        catch (Exception ex)
        {
            exception = ex;
        }

        // Complete (logically dispose) the resource.
        resource.Complete();
        try
        {
            await resource.Completion;
        }
        catch
        {
            // Only allow exceptions from Completion if the process
            //  delegate did not throw an exception.
            if (exception == null)
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                throw;
        }

        // Re-throw the process delegate exception if necessary.
        if (exception != null)
            ExceptionDispatchInfo.Capture(exception).Throw();

        return result;
    }
}

The code uses ExceptionDispatchInfo to preserve the stack trace of the exception.
Once these helpers are in place, calling code can use the Using method as such:

async Task Test()
{
    await AsyncHelpers.Using(() => new MyClass(), async resource =>
    {
        // Use resource.
    });
}

Discussion
Asynchronous completion is definitely more awkward than implementing Dispose as
a cancellation request, and the more complex approach should only be used when you
really need it. In fact, most of the time you can get away with not disposing anything at
all, which is certainly the easiest approach because you don’t have to do anything.

The asynchronous completion pattern described in this recipe is used by TPL Dataflow
blocks and a handful of other types (e.g., ConcurrentExclusiveSchedulerPair). Da‐
taflow blocks also have another type of completion request indicating that they should
complete with an error (IDataflowBlock.Fault(Exception)). This may make sense
for your types as well, so take the IAsyncCompletion in this recipe as one example of
how you can implement asynchronous completion.

This recipe has two patterns for handling disposal; it is also possible to use both of them
if you want. This would give your type the semantics of a clean shutdown if the client
code uses Complete and Completion or a “cancel” if the client code uses Dispose.

See Also
Recipe 10.3 covers the asynchronous initialization pattern.

The MSDN documentation for TPL Dataflow covers Dataflow Block Completion and
the clean shutdown semantics of TPL Dataflow blocks.

Recipe 9.8 covers linked cancellation tokens.

Recipe 10.1 covers asynchronous interfaces. 
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CHAPTER 11

Synchronization

When your application makes use of concurrency (as practically all .NET applications
do), then you need to watch out for situations where one piece of code needs to update
data while other code needs to access the same data. Whenever this happens, you need
to synchronize access to the data. The recipes in this chapter cover the most common
types used to synchronize access. However, if you use the other recipes in this book
appropriately, you’ll find that a lot of the more common synchronization is already done
for you by the appropriate libraries. Before diving into the synchronization recipes, let’s
take a closer look at some common situations where synchronization may or may not
be required.

The synchronization explanations in this section are slightly simpli‐
fied, but the conclusions are all correct.

There are two major types of synchronization: communication and data protection.
Communication is used when one piece of code needs to notify another piece of code
of some condition (e.g., a new message has arrived). We’ll cover communication more
thoroughly in the actual recipes; the remainder of this intro will discuss data protection.

We need to use synchronization to protect shared data when all three of these conditions
are true:

• Multiple pieces of code are running concurrently.
• These pieces are accessing (reading or writing) the same data.
• At least one piece of code is updating (writing) the data.
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The reason for the first condition should be obvious; if your entire code just runs from
top to bottom and nothing ever happens concurrently, then you never have to worry
about synchronization. This is the case for some simple Console applications, but the
vast majority of .NET applications do use some kind of concurrency. The second con‐
dition means that if each piece of code has its own local data that it doesn’t share, then
there’s no need for synchronization; the local data is independent from any other pieces
of code. There’s also no need for synchronization if there is shared data but the data
never changes; the third condition covers scenarios like configuration values and the
like that are set at the beginning of the application and then never change. If the shared
data is only read, then it doesn’t need synchronization.

The purpose of data protection is to provide each piece of code with a consistent view
of the data. If one piece of code is updating the data, then we use synchronization to
make those updates appear atomic to the rest of the system.

It takes some practice to learn when synchronization is necessary, so we’ll walk through
a few examples before actually starting the recipes in this chapter. As our first example,
consider the following code:

async Task MyMethodAsync()
{
    int val = 10;
    await Task.Delay(TimeSpan.FromSeconds(1));
    val = val + 1;
    await Task.Delay(TimeSpan.FromSeconds(1));
    val = val - 1;
    await Task.Delay(TimeSpan.FromSeconds(1));
    Trace.WriteLine(val);
}

If this method is called from a thread-pool thread (e.g., from within Task.Run), then
the lines of code accessing val may run on separate thread-pool threads. But does it
need synchronization? No, because none of them can be running at the same time. The
method is asynchronous, but it is also sequential (meaning it progresses one part at a
time).

OK, let’s complicate the example a bit. This time we’ll run concurrent asynchronous
code:

class SharedData
{
    public int Value { get; set; }
}

async Task ModifyValueAsync(SharedData data)
{
    await Task.Delay(TimeSpan.FromSeconds(1));
    data.Value = data.Value + 1;
}
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// WARNING: may require synchronization; see discussion below.
async Task<int> ModifyValueConcurrentlyAsync()
{
    var data = new SharedData();

    // Start three concurrent modifications.
    var task1 = ModifyValueAsync(data);
    var task2 = ModifyValueAsync(data);
    var task3 = ModifyValueAsync(data);

    await Task.WhenAll(task1, task2, task3);
    return data.Value;
}

In this case, we’re starting three modifications that run concurrently. Do we need syn‐
chronization? The answer is, “it depends.” If we know that the method is called from a
GUI or ASP.NET context (or any context that only allows one piece of code to run at a
time), then there is no synchronization necessary because when the actual data modi‐
fication code runs, it runs at a different time than the other two data modifications. For
example, if this is run in a GUI context, there is only one UI thread that will execute
each of the data modifications, so it must do them one at a time. So, if we know the
context is a one-at-a-time context, then there is no synchronization needed. However,
if this same method is called from a thread-pool thread (e.g., from Task.Run), then
synchronization would be necessary. In that case, the three data modifications could
run on separate thread-pool threads and update data.Value simultaneously, so we
would need to synchronize access to data.Value.

Now let’s make our data a private field instead of something we pass around, and con‐
sider one more wrinkle:

private int value;

async Task ModifyValueAsync()
{
    await Task.Delay(TimeSpan.FromSeconds(1));
    value = value + 1;
}

// WARNING: may require synchronization; see discussion below.
async Task<int> ModifyValueConcurrentlyAsync()
{
    // Start three concurrent modifications.
    var task1 = ModifyValueAsync();
    var task2 = ModifyValueAsync();
    var task3 = ModifyValueAsync();

    await Task.WhenAll(task1, task2, task3);
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    return value;
}

The same discussion also applies to this code; if the context may be a thread pool context,
then synchronization is definitely necessary. But there’s an additional wrinkle here.
Previously, we created a SharedData instance that was shared among the three modi‐
fying methods; this time, the shared data is an actual private field. This means that if
the calling code calls ModifyValueConcurrentlyAsync multiple times, each of those
separate calls shares the same value. We may want to apply synchronization even in a
one-at-a-time context if we want to avoid that kind of sharing. To put that another way,
if we want to make it so that each call to ModifyValueConcurrentlyAsync waits until
all previous calls have completed, then we will need to add synchronization. This is true
even if the context ensures that only one thread is used for all the code (i.e., the UI
thread). Synchronization in this scenario is actually a kind of throttling for asynchro‐
nous methods (see Recipe 11.2).

Let’s look at one more async example. You can use Task.Run to do what I call “simple
parallelism”—a basic kind of parallel processing that doesn’t provide the efficiency and
configurability that the true parallelism of Parallel/PLINQ does. The following code
updates a shared value using simple parallelism:

// BAD CODE!!
async Task<int> SimpleParallelismAsync()
{
    int val = 0;
    var task1 = Task.Run(() => { val = val + 1; });
    var task2 = Task.Run(() => { val = val + 1; });
    var task3 = Task.Run(() => { val = val + 1; });
    await Task.WhenAll(task1, task2, task3);
    return val;
}

In this case, we have three separate tasks running on the thread pool (via Task.Run), all
modifying the same val. So, our conditions apply, and we certainly do need synchro‐
nization here. Note that we do need synchronization even though val is a local variable;
it is still shared between threads even though it is local to this one method.

Moving on to true parallel code, let’s consider an example that uses the Parallel type:

void IndependentParallelism(IEnumerable<int> values)
{
    Parallel.ForEach(values, item => Trace.WriteLine(item));
}

Since this code uses Parallel, we must assume we’re running on multiple threads.
However, the body of the parallel loop (item => Trace.WriteLine(item)) only reads
from its own data; there’s no data sharing between threads here. The Parallel class
divides the data among threads so that none of them has to share its data. Each thread
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running its loop body is independent from all the other threads running the same loop
body. So, no synchronization of this code is necessary.

Let’s look at an aggregation example similar to the one covered in Recipe 3.2:

// BAD CODE!!
int ParallelSum(IEnumerable<int> values)
{
    int result = 0;
    Parallel.ForEach(source: values,
        localInit: () => 0,
        body: (item, state, localValue) => localValue + item,
        localFinally: localValue => { result += localValue; });
    return result;
}

In this example, we are again using multiple threads; this time, each thread starts with
its local value initialized to 0 (() => 0), and for each input value processed by that
thread, it adds the input value to its local value ((item, state, localValue) => lo
calValue + item). Finally, all the local values are added to the return value (localValue
=> { result += localValue; }). The first two steps aren’t problematic because there’s
nothing shared between threads; each thread’s local and input values are independent
from all other threads’ local and input values. However, the final step is problematic;
when each thread’s local value is added to the return value, we have a situation where
there is a shared variable (result) that is accessed by multiple threads and updated by
all of them. So, we need to use synchronization in that final step (see Recipe 11.1).

The PLINQ, dataflow, and reactive libraries are very similar to the Parallel examples:
as long as your code is just dealing with its own input, it doesn’t have to worry about
synchronization. I find that if I use these libraries appropriately, there is very little need
for me to add synchronization to most of my code.

Lastly, let’s discuss collections for a bit. Remember that the three conditions requiring
synchronization are multiple pieces of code, shared data, and data updates.

Immutable types are naturally threadsafe because they cannot change; it’s not possible
to update an immutable collection, so no synchronization is necessary. For example,
this code does not require synchronization because when each separate thread-pool
thread pushes a value onto the stack, it is actually creating a new immutable stack with
that value, leaving the original stack unchanged:

async Task<bool> PlayWithStackAsync()
{
    var stack = ImmutableStack<int>.Empty;

    var task1 = Task.Run(() => Trace.WriteLine(stack.Push(3).Peek()));
    var task2 = Task.Run(() => Trace.WriteLine(stack.Push(5).Peek()));
    var task3 = Task.Run(() => Trace.WriteLine(stack.Push(7).Peek()));
    await Task.WhenAll(task1, task2, task3);
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    return stack.IsEmpty; // Always returns true.
}

However, when your code uses immutable collections, it’s common to have a shared
“root” variable that is not itself immutable. In that case, you do have to use synchroni‐
zation. In the following code, each thread pushes a value onto the stack (creating a new
immutable stack) and then updates the shared root variable. In this example, we do need
synchronization to update the stack variable:

// BAD CODE!!
async Task<bool> PlayWithStackAsync()
{
    var stack = ImmutableStack<int>.Empty;

    var task1 = Task.Run(() => { stack = stack.Push(3); });
    var task2 = Task.Run(() => { stack = stack.Push(5); });
    var task3 = Task.Run(() => { stack = stack.Push(7); });
    await Task.WhenAll(task1, task2, task3);

    return stack.IsEmpty;
}

Threadsafe collections (e.g., ConcurrentDictionary) are quite different. Unlike im‐
mutable collections, threadsafe collections can be updated. However, they have all the
synchronization they need built in, so you don’t have to worry about it. If the following
code updated a Dictionary instead of a ConcurrentDictionary, it would need syn‐
chronization; but since it is updating a ConcurrentDictionary, it does not need
synchronization:

async Task<int> ThreadsafeCollectionsAsync()
{
    var dictionary = new ConcurrentDictionary<int, int>();

    var task1 = Task.Run(() => { dictionary.TryAdd(2, 3); });
    var task2 = Task.Run(() => { dictionary.TryAdd(3, 5); });
    var task3 = Task.Run(() => { dictionary.TryAdd(5, 7); });
    await Task.WhenAll(task1, task2, task3);

    return dictionary.Count; // Always returns 3.
}

11.1. Blocking Locks
Problem
You have some shared data and need to safely read and write it from multiple threads.
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Solution
The best solution for this situation is to use the lock statement. When a thread enters
a lock, it will prevent any other threads from entering that lock until the lock is released:

class MyClass
{
    // This lock protects the _value field.
    private readonly object _mutex = new object();

    private int _value;

    public void Increment()
    {
        lock (_mutex)
        {
            _value = _value + 1;
        }
    }
}

Discussion
There are many other kinds of locks in the .NET framework, such as Monitor, Spin
Lock, and ReaderWriterLockSlim. These lock types should almost never be used in
most applications. In particular, it is natural for developers to jump to ReaderWriter
LockSlim when there is no need for that level of complexity. The basic lock statement
handles 99% of cases quite well.

There are four important guidlines when using locks:

• Restrict lock visibility.
• Document what the lock protects.
• Minimize code under lock.
• Never execute arbitrary code while holding a lock.

First, you should strive to restrict lock visibility. The object used in the lock statement
should be a private field and never should be exposed to any method outside the class.
There is usually at most one lock per type; if you have more than one, consider refac‐
toring that type into separate types. You can lock on any reference type, but I prefer to
have a field specifically for use with the lock statement, as in the last example. In par‐
ticular, you should never lock(this) or lock on any instance of Type or string; these
locks can cause deadlocks because they are accessible from other code.

Second, document what the lock protects. This is easy to overlook when initially writing
the code but becomes more important as the code grows in complexity.
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Third, do your best to minimize the code that is executed while holding a lock. One
thing to watch for is blocking calls; it is not ideal to block at all while holding a lock.

Finally, do not ever call arbitrary code under lock. Arbitrary code can include raising
events, invoking virtual methods, or invoking delegates. If you must execute arbitrary
code, do so after the lock is released.

See Also
Recipe 11.2 covers async-compatible locks. The lock statement is not compatible with
await.

Recipe 11.3 covers signaling between threads. The lock statement is intended to protect
shared data, not send signals between threads.

Recipe 11.5 covers throttling, which is a generalization of locking. A lock can be thought
of as throttling to one at a time.

11.2. Async Locks
Problem
You have some shared data and need to safely read and write it from multiple code
blocks, which may be using await.

Solution
The .NET framework SemaphoreSlim type has been updated in version 4.5 to be com‐
patible with async. It can be used as such:

class MyClass
{
    // This lock protects the _value field.
    private readonly SemaphoreSlim _mutex = new SemaphoreSlim(1);

    private int _value;

    public async Task DelayAndIncrementAsync()
    {
        await _mutex.WaitAsync();
        try
        {
            var oldValue = _value;
            await Task.Delay(TimeSpan.FromSeconds(oldValue));
            _value = oldValue + 1;
        }
        finally
        {
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            _mutex.Release();
        }
    }
}

However, SemaphoreSlim can only be used this way on .NET 4.5 and other newer plat‐
forms. If you are on an older platform or writing a portable class library, you can use
the AsyncLock type from the Nito.AsyncEx library:

class MyClass
{
    // This lock protects the _value field.
    private readonly AsyncLock _mutex = new AsyncLock();

    private int _value;

    public async Task DelayAndIncrementAsync()
    {
        using (await _mutex.LockAsync())
        {
            var oldValue = _value;
            await Task.Delay(TimeSpan.FromSeconds(oldValue));
            _value = oldValue + 1;
        }
    }
}

Discussion
The same guidelines from Recipe 11.1 also apply here, specifically:

• Restrict lock visibility.
• Document what the lock protects.
• Minimize code under lock.
• Never execute arbitrary code while holding a lock.

Keep your lock instances private; do not expose them outside the class. Be sure to clearly
document (and carefully think through) exactly what a lock instance protects. Minimize
code that is executed while holding a lock. In particular, do not call arbitrary code; this
includes raising events, invoking virtual methods, and invoking delegates. Platform
support for asynchronous locks is detailed in Table 11-1.

Table 11-1. Platform support for asynchronous locks
Platform SemaphoreSlim.WaitAsync AsyncLock

.NET 4.5

.NET 4.0

Mono iOS/Droid
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Platform SemaphoreSlim.WaitAsync AsyncLock

Windows Store

Windows Phone Apps 8.1

Windows Phone SL 8.0

Windows Phone SL 7.1

Silverlight 5

The AsyncLock type is in the Nito.AsyncEx NuGet package.

See Also
Recipe 11.4 covers async-compatible signaling. Locks are intended to protect shared
data, not act as signals.

Recipe 11.5 covers throttling, which is a generalization of locking. A lock can be thought
of as throttling to one at a time.

11.3. Blocking Signals
Problem
You have to send a notification from one thread to another.

Solution
The most common and general-purpose cross-thread signal is ManualResetEvent
Slim. A manual-reset event can be in one of two states: signaled or unsignaled. Any
thread may set the event to a signaled state or reset the event to an unsignaled state. A
thread may also wait for the event to be signaled.

The following two methods are invoked by separate threads; one thread waits for a signal
from the other:

class MyClass
{
    private readonly ManualResetEventSlim _initialized =
        new ManualResetEventSlim();

    private int _value;

    public int WaitForInitialization()
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    {
        _initialized.Wait();
        return _value;
    }

    public void InitializeFromAnotherThread()
    {
        _value = 13;
        _initialized.Set();
    }
}

Discussion
ManualResetEventSlim is a great general-purpose signal from one thread to another,
but you should only use it when appropriate. If the “signal” is actually a message sending
some piece of data across threads, then consider using a producer/consumer queue. On
the other hand, if the signals are just used to coordinate access to shared data, then you
should use a lock instead.

There are other thread synchronization signal types in the .NET framework that are less
commonly used. If ManualResetEventSlim doesn’t suit your needs, consider AutoRese
tEvent, CountdownEvent, or Barrier.

See Also
Recipe 8.6 covers blocking producer/consumer queues.

Recipe 11.1 covers blocking locks.

Recipe 11.4 covers async-compatible signals.

11.4. Async Signals
Problem
You need to send a notification from one part of the code to another, and the receiver
of the notification must wait for it asynchronously.

Solution
If the notification only needs to be sent once, then you can use TaskCompletion
Source<T> to send the notification asynchronously. The sending code calls TrySetRe
sult, and the receiving code awaits its Task property:

class MyClass
{
    private readonly TaskCompletionSource<object> _initialized =
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        new TaskCompletionSource<object>();

    private int _value1;
    private int _value2;

    public async Task<int> WaitForInitializationAsync()
    {
        await _initialized.Task;
        return _value1 + _value2;
    }

    public void Initialize()
    {
        _value1 = 13;
        _value2 = 17;
        _initialized.TrySetResult(null);
    }
}

The TaskCompletionSource<T> type can be used to asynchronously wait for any kind
of situation—in this case, a notification from another part of the code. This works well
if the signal is only sent once, but does not work as well if you need to turn the signal
off as well as on.

The Nito.AsyncEx library contains a type AsyncManualResetEvent, which is an ap‐
proximate equivalent of ManualResetEvent for asynchronous code. The following ex‐
ample is fabricated, but it shows how to use the AsyncManualResetEvent type:

class MyClass
{
    private readonly AsyncManualResetEvent _connected =
        new AsyncManualResetEvent();

    public async Task WaitForConnectedAsync()
    {
        await _connected.WaitAsync();
    }

    public void ConnectedChanged(bool connected)
    {
        if (connected)
            _connected.Set();
        else
            _connected.Reset();
    }
}

Discussion
Signals are a general-purpose notification mechanism. But if that “signal” is a message,
used to send data from one piece of code to another, then consider using a producer/
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consumer queue. Similarly, do not use general-purpose signals just to coordinate access
to shared data; in that situation, use a lock.

The AsyncManualResetEvent type is in the Nito.AsyncEx NuGet
package.

See Also
Recipe 8.8 covers asynchronous producer/consumer queues.

Recipe 11.2 covers asynchronous locks.

Recipe 11.3 covers blocking signals, which can be used for notifications across threads.

11.5. Throttling
Problem
You have highly concurrent code that is actually too concurrent, and you need some
way to throttle the concurrency.

Code is too concurrent when parts of the application are unable to keep up with other
parts, causing data items to build up and consume memory. In this scenario, throttling
parts of the code can prevent memory issues.

Solution
The solution varies based on the type of concurrency your code is doing. These solutions
all restrict concurrency to a specific value. Reactive Extensions has more powerful op‐
tions, such as sliding time windows; throttling Rx is covered more thoroughly in
Recipe 5.4.

Dataflow and parallel code all have built-in options for throttling concurrency:

IPropagatorBlock<int, int> DataflowMultiplyBy2()
{
    var options = new ExecutionDataflowBlockOptions
    {
        MaxDegreeOfParallelism = 10
    };

    return new TransformBlock<int, int>(data => data * 2, options);
}

// Using Parallel LINQ (PLINQ)
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IEnumerable<int> ParallelMultiplyBy2(IEnumerable<int> values)
{
    return values.AsParallel()
        .WithDegreeOfParallelism(10)
        .Select(item => item * 2);
}

// Using the Parallel class
void ParallelRotateMatrices(IEnumerable<Matrix> matrices, float degrees)
{
    var options = new ParallelOptions
    {
        MaxDegreeOfParallelism = 10
    };
    Parallel.ForEach(matrices, options, matrix => matrix.Rotate(degrees));
}

Concurrent asynchronous code can be throttled by using SemaphoreSlim:

async Task<string[]> DownloadUrlsAsync(IEnumerable<string> urls)
{
    var httpClient = new HttpClient();
    var semaphore = new SemaphoreSlim(10);
    var tasks = urls.Select(async url =>
    {
        await semaphore.WaitAsync();
        try
        {
            return await httpClient.GetStringAsync(url);
        }
        finally
        {
            semaphore.Release();
        }
    }).ToArray();
    return await Task.WhenAll(tasks);
}

Discussion
Throttling may be necessary when you find your code is using too many resources (for
example, CPU or network connections). Bear in mind that end users usually have less
powerful machines than developers, so it is better to throttle by a little too much than
not enough.

See Also
Recipe 5.4 covers throttling for reactive code. 
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CHAPTER 12

Scheduling

When a piece of code executes, it has to run on some thread somewhere. A scheduler is
an object that decides where a certain piece of code runs. There are a few different
scheduler types in the .NET framework, and they’re used with slight differences by
parallel and dataflow code.

I recommend that you not specify a scheduler whenever possible; the defaults are usually
correct. For example, the await operator in asynchronous code will automatically re‐
sume the method within the same context, unless you override this default, as described
in Recipe 2.7. Similarly, reactive code has reasonable default contexts for raising its
events, which you can override with ObserveOn, as described in Recipe 5.2

However, if you need other code to execute in a specific context (e.g., a UI thread context,
or an ASP.NET request context), then you can use the scheduling recipes in this chapter
to control the scheduling of your code.

12.1. Scheduling Work to the Thread Pool
Problem
You have a piece of code that you explicitly want to execute on a thread-pool thread.

Solution
The vast majority of the time, you’ll want to use Task.Run, which is quite simple. The
following code blocks a thread-pool thread for two seconds:

Task task = Task.Run(() =>
{
    Thread.Sleep(TimeSpan.FromSeconds(2));
});
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Task.Run also understands return values and asynchronous lambdas just fine. The task
returned by Task.Run in the following code will complete after two seconds with a result
of 13:

Task<int> task = Task.Run(async () =>
{
    await Task.Delay(TimeSpan.FromSeconds(2));
    return 13;
});

Task.Run returns a Task (or Task<T>), which can be naturally consumed by asynchro‐
nous or reactive code.

Discussion
Task.Run is ideal for UI applications, when you have time-consuming work to do that
cannot be done on the UI thread. For example, Recipe 7.4 uses Task.Run to push parallel
processing to a thread-pool thread. However, do not use Task.Run on ASP.NET unless
you are absolutely sure you know what you’re doing. On ASP.NET, request handling
code is already running on a thread-pool thread, so pushing it onto another thread-pool
thread is usually counterproductive.

Task.Run is an effective replacement for BackgroundWorker, Delegate.BeginInvoke,
and ThreadPool.QueueUserWorkItem. None of those should be used in new code; code
using Task.Run is much easier to write correctly and maintain over time. Furthermore,
Task.Run handles the vast majority of use cases for Thread, so most uses of Thread can
also be replaced with Task.Run (with rare exceptions, such as Single-Thread Apartment
threads).

Parallel and dataflow code executes on the thread pool by default, so there’s usually no
need to use Task.Run with code executed by the Parallel, Parallel LINQ, or TPL Da‐
taflow libraries.

If you are doing dynamic parallelism, then use Task.Factory.StartNew instead of
Task.Run. This is necessary because the Task returned by Task.Run has its default op‐
tions configured for asynchronous use (i.e., to be consumed by asynchronous or reactive
code). It does not support advanced concepts, such as parent/child tasks, which are
more common in dynamic parallel code.

See Also
Recipe 7.6 covers consuming asynchronous code (such as the task returned from
Task.Run) with reactive code.

Recipe 7.4 covers asynchronously waiting for parallel code, which is most easily done
via Task.Run.
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Recipe 3.4 covers dynamic parallelism, a scenario where you should use Task.Facto
ry.StartNew instead of Task.Run.

12.2. Executing Code with a Task Scheduler
Problem
You have multiple pieces of code that you need to execute in a certain way. For example,
you may need all the pieces of code to execute on the UI thread, or you may need to
execute only a certain number at a time.

This recipe deals with how to define and construct a scheduler for those pieces of code.
Actually applying that scheduler is the subject of the next two recipes.

Solution
There are quite a few different types in .NET that can handle scheduling; this recipe
focuses on TaskScheduler because it is portable and relatively easy to use.

The simplest TaskScheduler is TaskScheduler.Default, which queues work to the
thread pool. You will seldomly specify TaskScheduler.Default in your own code, but
it is important to be aware of it, since it is the default for many scheduling scenarios.
Task.Run, parallel, and dataflow code all use TaskScheduler.Default.

You can capture a specific context and later schedule work back to it by using Task
Scheduler.FromCurrentSynchronizationContext, as follows:

TaskScheduler scheduler = TaskScheduler.FromCurrentSynchronizationContext();

This creates a TaskScheduler that captures the current SynchronizationContext and
schedules code onto that context. SynchronizationContext is a type that represents a
general-purpose scheduling context. There are several different contexts in the .NET
framework; most UI frameworks provide a SynchronizationContext that represents
the UI thread, and ASP.NET provides a SynchronziationContext that represents the
HTTP request context.

Another powerful type introduced in .NET 4.5 is the ConcurrentExclusiveScheduler
Pair, which is actually two schedulers that are related to each other. The Concurrent
Scheduler member is a scheduler that allows multiple tasks to execute at the same time,
as long as no task is executing on the ExclusiveScheduler. The ExclusiveSchedu
ler only executes code one task at a time, and only when there is no task already exe‐
cuting on the ConcurrentScheduler:

var schedulerPair = new ConcurrentExclusiveSchedulerPair();
TaskScheduler concurrent = schedulerPair.ConcurrentScheduler;
TaskScheduler exclusive = schedulerPair.ExclusiveScheduler;
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One common use for ConcurrentExclusiveSchedulerPair is to just use the Exclusi
veScheduler to ensure only one task is executed at a time. Code that executes on the
ExclusiveScheduler will run on the thread pool but will be restricted to executing
exclusive of all other code using the same ExclusiveScheduler instance.

Another use for ConcurrentExclusiveSchedulerPair is as a throttling scheduler. You
can create a ConcurrentExclusiveSchedulerPair that will limit its own concurrency.
In this scenario, the ExclusiveScheduler is usually not used:

var schedulerPair = new ConcurrentExclusiveSchedulerPair(TaskScheduler.Default,
    maxConcurrencyLevel: 8);
TaskScheduler scheduler = schedulerPair.ConcurrentScheduler;

Note that this kind of throttling only throttles code while it is executing; it is quite
different than the kind of logical throttling covered in Recipe 11.5. In particular, asyn‐
chronous code is not considered to be executing while it is awaiting an operation. The
ConcurrentScheduler throttles executing code; other throttling, such as Semaphore
Slim, throttles at a higher level (i.e., an entire async method).

Discussion
You may have noticed that the last code example passed TaskScheduler.Default into
the constructor for ConcurrentExclusiveSchedulerPair. This is because Concurren
tExclusiveSchedulerPair actually applies its concurrent/exclusive logic around an
existing TaskScheduler.

This recipe introduces TaskScheduler.FromCurrentSynchronizationContext, which
is useful to execute code on a captured context. It is also possible to use Synchoroniza
tionContext directly to execute code on that context; however, I do not recommend
this approach. Whenever possible, use the await operator to resume on an implicitly
captured context or use a TaskScheduler wrapper.

Do not ever use platform-specific types to execute code on a UI thread. WPF, Silverlight,
iOS, and Android all provide the Dispatcher type, Windows Store uses the CoreDis
patcher, and Windows Forms has the ISynchronizeInvoke interface (i.e., Control.In
voke). Do not use any of these types in new code; just pretend they don’t exist. Using
them will tie your code to a specific platform unnecessarily. SynchronizationCon
text is a general-purpose abstraction around these types.

Reactive Extensions introduces a more general scheduler abstraction: IScheduler. An
Rx scheduler is capable of wrapping any other kind of scheduler; the TaskPoolSchedu
ler will wrap any TaskFactory (which contains a TaskScheduler). The Rx team also
defined an IScheduler implementation that can be manually controlled for testing. If
you need to actually use a scheduler abstraction, I’d recommend using the ISchedu
ler from Rx; it’s well designed, well defined, and test friendly. However, most of the
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time you don’t need a scheduler abstraction, and earlier libraries, such as the Task Par‐
allel Library and TPL Dataflow, only understand the TaskScheduler type.

See Also
Recipe 12.3 covers applying a TaskScheduler to parallel code.

Recipe 12.4 covers applying a TaskScheduler to dataflow code.

Recipe 11.5 covers higher-level logical throttling.

Recipe 5.2 covers Reactive Extensions schedulers for event streams.

Recipe 6.6 covers the Reactive Extensions test scheduler.

12.3. Scheduling Parallel Code
Problem
You need to control how the individual pieces of code are executed in parallel code.

Solution
Once you create an appropriate TaskScheduler instance (see Recipe 12.2), you can
include it in the options that you pass to a Parallel method. The following code takes
a sequence of sequences of matrices; it starts a bunch of parallel loops and wants to limit
the total parallelism of all loops simultaneously, regardless of how many matrices are
in each sequence:

void RotateMatrices(IEnumerable<IEnumerable<Matrix>> collections, float degrees)
{
    var schedulerPair = new ConcurrentExclusiveSchedulerPair(
        TaskScheduler.Default, maxConcurrencyLevel: 8);
    TaskScheduler scheduler = schedulerPair.ConcurrentScheduler;
    ParallelOptions options = new ParallelOptions { TaskScheduler = scheduler };
    Parallel.ForEach(collections, options,
        matrices => Parallel.ForEach(matrices, options,
            matrix => matrix.Rotate(degrees)));
}

Discussion
Parallel.Invoke also takes an instance of ParallelOptions, so you can pass a Task
Scheduler to Parallel.Invoke the same way as Parallel.ForEach. If you are doing
dynamic parallel code, you can pass TaskScheduler directly to TaskFactory.Start
New or Task.ContinueWith.

There is no way to pass a TaskScheduler to Parallel LINQ (PLINQ) code.
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See Also
Recipe 12.2 covers common task schedulers and how to choose between them.

12.4. Dataflow Synchronization Using Schedulers
Problem
You need to control how the individual pieces of code are executed in dataflow code.

Solution
Once you create an appropriate TaskScheduler instance (see Recipe 12.2), you can
include it in the options that you pass to a dataflow block. When called from the UI
thread, the following code creates a dataflow mesh that multiples all of its input values
by two (using the thread pool) and then appends the resulting values to the items of a
list box (on the UI thread):

var options = new ExecutionDataflowBlockOptions
{
    TaskScheduler = TaskScheduler.FromCurrentSynchronizationContext(),
};
var multiplyBlock = new TransformBlock<int, int>(item => item * 2);
var displayBlock = new ActionBlock<int>(
    result => ListBox.Items.Add(result), options);
multiplyBlock.LinkTo(displayBlock);

Discussion
Specifying a TaskScheduler is especially useful if you need to coordinate the actions of
blocks in different parts of your dataflow mesh. For example, you can use the Concur
rentExclusiveSchedulerPair.ExclusiveScheduler to ensure that blocks A and C
never execute code at the same time, while allowing block B to execute whenever it
wants.

Keep in mind that synchronization by TaskScheduler only applies while the code is
executing. For example, if you have an action block that runs asynchronous code and
you apply an exclusive scheduler, the code is not considered running when it is awaiting.

You can specify a TaskScheduler for any kind of dataflow block. Even though a block
may not execute your code (e.g., BufferBlock<T>), it still has housekeeping tasks that
it needs to do, and it will use the provided TaskScheduler for all of its internal work.

See Also
Recipe 12.2 covers common task schedulers and how to choose between them. 
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CHAPTER 13

Scenarios

In this chapter, we’ll take a look at a variety of types and techniques to address some
common scenarios when writing concurrent programs. These kinds of scenarios could
fill up another entire book, so I’ve selected just a few that I’ve found the most useful.

13.1. Initializing Shared Resources
Problem
You have a resource that is shared between multiple parts of your code. This resource
needs to be initialized the first time it is accessed.

Solution
The .NET framework includes a type specifically for this purpose: Lazy<T>. You con‐
struct an instance of this type with a factory delegate that is used to initialize the instance.
The instance is then made available via the Value property. The following code illustrates
the Lazy<T> type:

static int _simpleValue;
static readonly Lazy<int> MySharedInteger = new Lazy<int>(() => _simpleValue++);

void UseSharedInteger()
{
    int sharedValue = MySharedInteger.Value;
}

No matter how many threads call UseSharedInteger simultaneously, the factory dele‐
gate is only executed once, and all threads wait for the same instance. Once it is created,
the instance is cached and all future access to the Value property returns the same
instance (in the preceding example, MySharedInteger.Value will always be 0).
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A very similar approach can be used if the initialization requires asynchronous work;
in this case, we use a Lazy<Task<T>>:

static int _simpleValue;
static readonly Lazy<Task<int>> MySharedAsyncInteger =
    new Lazy<Task<int>>(async () =>
    {
        await Task.Delay(TimeSpan.FromSeconds(2)).ConfigureAwait(false);
        return _simpleValue++;
    });

async Task GetSharedIntegerAsync()
{
    int sharedValue = await MySharedAsyncInteger.Value;
}

In this example, the delegate returns a Task<int>, that is, an integer value determined
asynchronously. No matter how many parts of the code call Value simultaneously, the
Task<int> is only created once and returned to all callers. Each caller then has the option
of (asynchronously) waiting until the task completes by passing the task to await.

This is an acceptable pattern, but there is one additional consideration. The asynchro‐
nous delegate may be executed on any thread that calls Value, and that delegate will
execute within that context. If there are different thread types that may call Value (e.g.,
a UI thread and a thread-pool thread, or two different ASP.NET request threads), then
it may be better to always execute the asynchronous delegate on a thread-pool thread.
This is easy enough to do by just wrapping the factory delegate in a call to Task.Run:

static readonly Lazy<Task<int>> MySharedAsyncInteger = new Lazy<Task<int>>(
    () => Task.Run(
        async () =>
        {
            await Task.Delay(TimeSpan.FromSeconds(2));
            return _simpleValue++;
        }));

Discussion
The final code sample is a general code pattern for asynchronous lazy initialization.
However, it’s a bit awkward. The AsyncEx library includes an AsyncLazy<T> type that
acts just like a Lazy<Task<T>> that executes its factory delegate on the thread pool. It
can also be awaited directly, so the declaration and usage look like this:

private static readonly AsyncLazy<int> MySharedAsyncInteger =
    new AsyncLazy<int>(async () =>
    {
        await Task.Delay(TimeSpan.FromSeconds(2));
        return _simpleValue++;
    });
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public async Task UseSharedIntegerAsync()
{
    int sharedValue = await MySharedAsyncInteger;
}

The AsyncLazy<T> type is in the Nito.AsyncEx NuGet package.

See Also
Chapter 1 covers basic async/await programming.

Recipe 12.1 covers scheduling work to the thread pool.

13.2. Rx Deferred Evaluation
Problem
You want to create a new source observable whenever someone subscribes to it. For
example, you want each subscription to represent a different request to a web service.

Solution
The Rx library has an operator Observable.Defer, which will execute a delegate each
time the observable is subscribed to. This delegate acts as a factory that creates an ob‐
servable. The following code uses Defer to call an asynchronous method every time
someone subscribes to the observable:

static void Main(string[] args)
{
    var invokeServerObservable = Observable.Defer(
        () => GetValueAsync().ToObservable());
    invokeServerObservable.Subscribe(_ => { });
    invokeServerObservable.Subscribe(_ => { });

    Console.ReadKey();
}

static async Task<int> GetValueAsync()
{
    Console.WriteLine("Calling server...");
    await Task.Delay(TimeSpan.FromSeconds(2));
    Console.WriteLine("Returning result...");
    return 13;
}
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If you execute this code, you should see output like this:

Calling server...
Calling server...
Returning result...
Returning result...

Discussion
Your own code usually doesn’t subscribe to an observable more than once, but some Rx
operators do under the covers. For example, the Observable.While operator will re-
subscribe to a source sequence as long as its condition is true. Defer allows you to define
an observable that is reevaluated every time a new subscription comes in. This is useful
if you need to refresh or update the data for that observable.

See Also
Recipe 7.6 covers wrapping asynchronous methods in observables.

13.3. Asynchronous Data Binding
Problem
You are retrieving data asynchronously and need to data-bind the results (e.g., in the
ViewModel of a Model-View-ViewModel design).

Solution
When a property is used in data binding, it must immediately and synchronously return
some kind of result. If the actual value needs to be determined asynchronously, you can
return a default result and later update the property with the correct value.

Keep in mind that asynchronous operations can usually end with failure as well as
success. Since we are writing a ViewModel, we could use data binding to update the UI
for an error condition as well.

The AsyncEx library has a type NotifyTaskCompletion that can be used for this:

class MyViewModel
{
    public MyViewModel()
    {
        MyValue = NotifyTaskCompletion.Create(CalculateMyValueAsync());
    }

    public INotifyTaskCompletion<int> MyValue { get; private set; }

    private async Task<int> CalculateMyValueAsync()
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    {
        await Task.Delay(TimeSpan.FromSeconds(10));
        return 13;
    }
}

It is possible to data-bind to various properties on the INotifyTaskCompletion<T>
property, as follows:

<Grid>
    <Label Content="Loading..."
        Visibility="{Binding MyValue.IsNotCompleted,
            Converter={StaticResource BooleanToVisibilityConverter}}"/>
    <Label Content="{Binding MyValue.Result}"
        Visibility="{Binding MyValue.IsSuccessfullyCompleted,
            Converter={StaticResource BooleanToVisibilityConverter}}"/>
    <Label Content="An error occurred" Foreground="Red"
        Visibility="{Binding MyValue.IsFaulted,
            Converter={StaticResource BooleanToVisibilityConverter}}"/>
</Grid>

Discussion
It’s also possible to write your own data-binding wrapper instead of using the one from
the AsyncEx library. This code gives the basic idea:

class BindableTask<T> : INotifyPropertyChanged
{
    private readonly Task<T> _task;

    public BindableTask(Task<T> task)
    {
        _task = task;
        var _ = WatchTaskAsync();
    }

    private async Task WatchTaskAsync()
    {
        try
        {
            await _task;
        }
        catch
        {
        }

        OnPropertyChanged("IsNotCompleted");
        OnPropertyChanged("IsSuccessfullyCompleted");
        OnPropertyChanged("IsFaulted");
        OnPropertyChanged("Result");
    }

13.3. Asynchronous Data Binding | 177



    public bool IsNotCompleted { get { return !_task.IsCompleted; } }
    public bool IsSuccessfullyCompleted
    { get { return _task.Status == TaskStatus.RanToCompletion; } }
    public bool IsFaulted { get { return _task.IsFaulted; } }
    public T Result
    { get { return IsSuccessfullyCompleted ? _task.Result : default(T); } }

    public event PropertyChangedEventHandler PropertyChanged;

    protected virtual void OnPropertyChanged(string propertyName)
    {
        PropertyChangedEventHandler handler = PropertyChanged;
        if (handler != null)
            handler(this, new PropertyChangedEventArgs(propertyName));
    }
}

Note that there is an empty catch clause on purpose: we specifically want to catch all
exceptions and handle those conditions via data binding. Also, we explicitly do not want
to use ConfigureAwait(false) because the PropertyChanged event should be raised
on the UI thread.

The NotifyTaskCompletion type is in the Nito.AsyncEx NuGet
package.

See Also
Chapter 1 covers basic async/await programming.

Recipe 2.7 covers using ConfigureAwait.

13.4. Implicit State
Problem
You have some state variables that need to be accessible at different points in your call
stack. For example, you have a current operation identifier that you want to use for
logging but that you don’t want to add as a parameter to every method.

Solution
The best solution is to add parameters to your methods, store data as members of a
class, or use dependency injection to provide data to the different parts of your code.
However, there are some situations where that would overcomplicate the code.
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The CallContext type in .NET provides LogicalSetData and LogicalGetData meth‐
ods that allow you to give your state a name and place it on a logical “context.” When
you are done with that state, you can call FreeNamedDataSlot to remove it from the
context. The following code shows how to use these methods to set an operation iden‐
tifier that is later read by a logging method:

void DoLongOperation()
{
    var operationId = Guid.NewGuid();
    CallContext.LogicalSetData("OperationId", operationId);

    DoSomeStepOfOperation();

    CallContext.FreeNamedDataSlot("OperationId");
}

void DoSomeStepOfOperation()
{
    // Do some logging here.
    Trace.WriteLine("In operation: " +
        CallContext.LogicalGetData("OperationId"));
}

Discussion
The logical call context can be used with async methods, but only on .NET 4.5 and
above. If you try to use it on .NET 4.0 with the Microsoft.Bcl.Async NuGet package,
the code will compile but will not work correctly.

You should only store immutable data in the logical call context. If you need to update
a data value in the logical call context, then you should overwrite the existing value with
another call to LogicalSetData.

The logical call context is not extremely performant. I recommend you add parameters
to your methods or store the data as members of a class instead of using the implicit
logical call context, if at all possible.

If you are writing an ASP.NET application, consider using HttpContext.Cur
rent.Items, which does the same thing but is more performant than CallContext.

See Also
Chapter 1 covers basic async/await programming.

Chapter 8 covers several immutable collections if you need to store complex data as
implicit state. 
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We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.
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of work to thread pool, 167

Select operator, 11
SelectMany operator, 89
SemaphoreSlim class, 160

throttling concurrent async code, 166
sequences

of tasks, processing in sequence order, 26
Rx operators for, 74

sets, immutable, 100
shared resources, initializing, 173
signals

async, 163
blocking, 162

SingleAsync operator, 75
Skeet, Jon, 29
stacks, immutable, 96
StartAsync operator, 89
state

asynchronous code and, 145
implicit, 178

Subject<T> class, 12
Subscribe operator, 11

error handling parameters, 12
SubscribeOn operator, 58
subscriptions in Rx, 11, 128
Sum operator, 38
synchronization, 153–166

async locks, 160
dataflow, using schedulers, 172
necessary conditions for, 153
using async signals, 163
using blocking signals, 162
using locks, 158
using throttling, 165

synchronization contexts, 59
SynchronizationContext class, 4, 33, 169

using instead of platform-specific types to
execute code on UI thread, 170

System.Net.NetworkInformation.Ping class, 133

T
Take operator, 88
TAP (Task-based Asynchronous Pattern), 81
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Task class, 3
async Task-returning methods, 34
creating a Task instance, 5
Exception property, 24
handling exceptions from async Task meth‐

ods, 31
in task parallelism, 9
using for dynamic parallelism, 40

task continuations (see continuations)
Task Parallel Library (TPL), 16

platform support for, 35
task parallelism, 7, 8
Task-based Asynchronous Pattern (TAP), 7, 81
Task.ConfigureAwait method, 30
Task.Delay method, 18

passing CancellationToken to, 126
using as simple timeout, 19
using for exponential backoff in retries, 18

Task.Factory.StartNew method, 168
Task.FromResult method, 20, 69
Task.Run method, 86

scheduling work to the thread pool, 167
Task.Wait method, 68
Task.WhenAll method, 22

tasks throwing exceptions, 24
Task.WhenAny method, 25
Task<T>, conversion to +IObservable<T>, 88
TaskCanceledException, 119
TaskCompletionSource class, 21
TaskCompletionSource<T>, 5, 69, 163

wrapping any asynchronous method, 85
TaskCompletionSource<TResult> type, 81
TaskEx class, 26
TaskFactory type, FromAsync methods, 84
tasks

length of, and scheduling on the thread pool,
9

processing as they complete, 26
TaskScheduler class, 4, 169, 170

using to schedule parallel code, 171
using to synchronize dataflow, 172

TaskScheduler.Default, 169
TaskScheduler.FromCurrentSynchronization‐

Context, 169
testing, 67–79

unit testing async methods, 68
unit testing async methods expected to fail,

69
unit testing async void methods, 71

unit testing dataflow meshes, 72
unit testing Rx observables, 74
unit testing Rx observables with faked

scheduling, 76
TestScheduler class, 77
thread pools, 2, 14

in data and task parallelism, 9
scheduling work to, 167

threads, 14
threadsafe collections, 94
Throttle operator, 62
throttling, 165

using ConcurrentExclusiveSchedulerPair,
170

Throw operator, 75
ThrowIfCancellationRequested method, Can‐

cellationToken, 124
time, Rx observables that depend on, 76
Timeout operator, 64
TimeoutException class, 64
timeouts

cancellation after, 124
implementing with Task.WhenAny, not rec‐

ommended, 26
using Task.Delay method, 19

timers, cancellation requests based on, 124
Timestamp operator, 11
Token property, CancellationTokenSource, 120
ToObservable operator, 88
Toub, Stephen, 29
TPL (Task Parallel Library), 16

platform support for, 35
TPL Dataflow library, 12, 16, 45

platform support for, 45
TransformBlock<TInput, TOutput> class, 14
TransformManyBlock<TInput, TOutput> class,

14
TryCompleteFromEventArgs extension method,

82

U
unit tests (see testing)

V
ViewModel of a Model-View-ViewModel de‐

sign, 176
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WaitAsync() method, 6
WebClient.DownloadStringCompleted, 57
WebClient.DownloadStringTaskAsync exten‐

sion method, 82
WebRequest.GetResponseAsync extension

method, 84

Where operator, 11, 64
Window operator, 60

Buffer versus, 61
grouping events, 61
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WithCancellation operator, 127
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