
Joe Mayo

Modern Recipes for Professional Developers

 C#
Cookbook

Joe Mayo

C# Cookbook
Modern Recipes for Professional Developers

978-1-492-09369-5

[LSI]

C# Cookbook
by Joe Mayo

Copyright © 2022 Mayo Software, LLC. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Amanda Quinn
Development Editor: Angela Rufino
Production Editor: Katherine Tozer
Copyeditor: Justin Billing
Proofreader: Piper Editorial Consulting, LLC

Indexer: WordCo Indexing Services, Inc.
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

October 2021: First Edition

Revision History for the First Edition
2021-09-29: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492093695 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. C# Cookbook, the cover image, and
related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author, and do not represent the publisher’s views.
While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492093695

Table of Contents

Preface. vii

1. Constructing Types and Apps. 1
1.1 Managing Object End-of-Lifetime 2
1.2 Removing Explicit Dependencies 6
1.3 Delegating Object Creation to a Class 10
1.4 Delegating Object Creation to a Method 12
1.5 Designing Application Layers 16
1.6 Returning Multiple Values from a Method 21
1.7 Converting from Legacy to Strongly Typed Classes 24
1.8 Making Classes Adapt to Your Interface 28
1.9 Designing a Custom Exception 30
1.10 Constructing Objects with Complex Configuration 33

2. Coding Algorithms. 37
2.1 Processing Strings Efficiently 38
2.2 Simplifying Instance Cleanup 41
2.3 Keeping Logic Local 43
2.4 Operating on Multiple Classes the Same Way 45
2.5 Checking for Type Equality 48
2.6 Processing Data Hierarchies 52
2.7 Converting from/to Unix Time 55
2.8 Caching Frequently Requested Data 58
2.9 Delaying Type Instantiation 60
2.10 Parsing Data Files 63

3. Ensuring Quality. 67
3.1 Writing a Unit Test 68

iii

3.2 Versioning Interfaces Safely 72
3.3 Simplifying Parameter Validation 74
3.4 Protecting Code from NullReferenceException 76
3.5 Avoiding Magic Strings 81
3.6 Customizing Class String Representation 83
3.7 Rethrowing Exceptions 85
3.8 Managing Process Status 90
3.9 Building Resilient Network Connections 91
3.10 Measuring Performance 94

4. Querying with LINQ. 97
4.1 Transforming Object Shape 98
4.2 Joining Data 100
4.3 Performing Left Joins 104
4.4 Grouping Data 108
4.5 Building Incremental Queries 111
4.6 Querying Distinct Objects 116
4.7 Simplifying Queries 120
4.8 Operating on Sets 123
4.9 Building a Query Filter with Expression Trees 127
4.10 Querying in Parallel 134

5. Implementing Dynamic and Reflection. 139
5.1 Reading Attributes with Reflection 140
5.2 Accessing Type Members with Reflection 144
5.3 Instantiating Type Members with Reflection 150
5.4 Invoking Methods with Reflection 159
5.5 Replacing Reflection with Dynamic Code 162
5.6 Performing Interop with Office Apps 164
5.7 Creating an Inherently Dynamic Type 169
5.8 Adding and Removing Type Members Dynamically 172
5.9 Calling Python Code from C# 174
5.10 Calling C# Code from Python 177

6. Programming Asynchronously. 181
6.1 Creating Async Console Applications 182
6.2 Reducing Memory Allocations for Async Return Values 184
6.3 Creating Async Iterators 187
6.4 Writing Safe Async Libraries 190
6.5 Updating Progress Asynchronously 193
6.6 Calling Synchronous Code from Async Code 195
6.7 Waiting for Parallel Tasks to Complete 198

iv | Table of Contents

6.8 Handling Parallel Tasks as They Complete 201
6.9 Cancelling Async Operations 206
6.10 Disposing of Async Resources 209

7. Manipulating Data. 215
7.1 Generating Password Hashes 215
7.2 Encrypting and Decrypting Secrets 219
7.3 Hiding Development Secrets 222
7.4 Producing JSON 224
7.5 Consuming JSON 227
7.6 Working with JSON Data 232
7.7 Consuming XML 239
7.8 Producing XML 243
7.9 Encoding and Decoding URL Parameters 246
7.10 Flexible DateTime Reading 249

8. Matching with Patterns. 253
8.1 Converting Instances Safely 253
8.2 Catching Filtered Exceptions 257
8.3 Simplifying Switch Assignments 258
8.4 Switching on Property Values 261
8.5 Switching on Tuples 263
8.6 Switching on Position 266
8.7 Switching on Value Ranges 269
8.8 Switching with Complex Conditions 270
8.9 Using Logical Conditions 273
8.10 Switching on Type 275

9. Examining Recent C# Language Highlights. 279
9.1 Simplifying Application Startup 280
9.2 Reducing Instantiation Syntax 281
9.3 Initializing Immutable State 284
9.4 Creating Immutable Types 286
9.5 Simplifying Immutable Type Assignments 291
9.6 Designing for Record Reuse 292
9.7 Returning Different Method Override Types 294
9.8 Implementing Iterators as Extension Methods 297
9.9 Slicing Arrays 299
9.10 Initializing Entire Modules 301

Table of Contents | v

Summary. 305

Index. 307

vi | Table of Contents

Preface

Why I Wrote This Book
In the course of a career, we collect many tools. Whether concepts, techniques,
patterns, or reusable code, these tools help us get our job done. The more we collect,
the better, because we have so many problems to solve and applications to build.
C# Cookbook contributes to your toolset by providing you with a variety of recipes.

Things change over time, including programming languages. As of this writing, the
C# programming language is over 20 years old, and software development has
changed during its lifetime. There are a lot of recipes that could be written; this book
acknowledges the evolution of C# over time and the fact that modern C# code makes
us more productive.

This book is full of recipes that I’ve used throughout my career. In addition to stating
a problem, presenting code, and explaining the solution, each discussion includes
deeper insight into why each recipe is important. Throughout the book, I’ve avoided
advocacy of process or absolute declarations of “you must do it this way” because
much of what we do in creating software requires trade-offs. In fact, you’ll find sev‐
eral discussions of what the consequences or trade-offs are with a recipe. This
respects the fact that you can consider to what extent a recipe applies to you.

Who This Book Is For
This book assumes that you already know basic C# syntax. That said, there are recipes
for various levels of developers. Whether you’re a beginner, intermediate, or senior
developer, there should be something for you. If you’re an architect, there might be
some interesting recipes that help you get back up to speed on the latest C#
techniques.

vii

How This Book Is Organized
When brainstorming for this book, the entire focus was on answering the question
“What do C# developers need to do?” Looking at the list, certain patterns emerged
and evolved into chapters:

• One of the first things I do when writing code is to build the types and organize
the application. So I wrote Chapter 1 to show how to create and organize types.
You’ll see recipes dealing with patterns because that’s how I code.

• After creating types, we add type members, like methods, and the logic they con‐
tain, which is a natural category of recipes for Chapter 2.

• What good is code unless it works well? That’s why I added Chapter 3, which
contains recipes that help improve the quality of code. While this chapter is
packed with useful recipes, you’ll want to check out the recipe that shows how to
use nullable reference types.

While Chapters 1 through 3 follow the “What do C# developers need to do?” theme,
from Chapter 4 to the end of the book I break away, taking a technology-specific
focus:

• Many people think of Language Integrated Query (LINQ) as a database technol‐
ogy. While LINQ is useful for working with databases, it’s also excellent for in-
memory data manipulation and querying. That’s why Chapter 4 discusses what
you can do with the in-memory provider, called LINQ to Objects.

• Reflection was part of C# 1, but dynamic programming came along later in C# 4.
I think it’s important to discuss both technologies in Chapter 5 and even show
how dynamic programing can be better than reflection in some situations. Also,
be sure to check out the Python interop recipes.

• Async programming was a great addition to C# and seems straightforward, on
the surface. Chapter 6 covers async with recipes that explain several important
features you might not be aware of.

• All apps use data, whether securing, parsing, or serializing. Chapter 7 includes
several recipes covering different things you want to do with data. It focuses on
some of the newer libraries and algorithms you might want to use for working
with data.

• One of the largest transformations of the C# language occurred over the last few
versions in the area of pattern matching. There are so many that I was able to fill
Chapter 8 with only pattern-matching recipes.

• C# continues to evolve and Chapter 9 captures recipes dedicated to C# 9. We’ll
look at some of the new features and discuss how to apply them. While I provide
insight in the discussion, remember that sometimes new features can become

viii | Preface

more integral to a language in later versions. If you’re into the cutting edge, these
recipes are pretty interesting.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Preface | ix

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/JoeMayo/csharp-nine-cookbook.

If you have a technical question or a problem using the code examples, please send
email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount
of example code from this book into your product’s documentation does require
permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “C# Cookbook by Joe
Mayo (O’Reilly). Copyright 2022 Mayo Software, LLC, 978-1-492-09369-5.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com.

x | Preface

https://github.com/JoeMayo/csharp-nine-cookbook
mailto:bookquestions@oreilly.com
mailto:permissions@oreilly.com
http://oreilly.com
http://oreilly.com

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/c-sharp-cb.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For news and information about our books and courses, visit http://oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
From concept to delivery, there are many people involved in creating a new book. I
would like to recognize the people who helped on C# Cookbook.

Amanda Quinn, Senior Content Acquisitions Editor, helped form the concept for the
book and provided feedback as I outlined its contents. Angela Rufino, Content Devel‐
opment Editor, got me started on standards and tools, provided feedback on my writ‐
ing, and was incredibly helpful during the entire process. Bassam Alugili, Octavio
Hernandez, and Shadman Kudchikar were tech editors, correcting errors, adding
excellent insight, and sharing new ideas. Katherine Tozer, Production Editor and
Vendor Coordinator, kept me up to date on new early releases and coordinated other
production items. Justin Billing, Copyeditor, did a great job at improving my writing.
There are many other people behind the scenes that made this book possible.

I would like to thank all of you. I am grateful for your contributions and wish you all
the best.

Preface | xi

https://oreil.ly/c-sharp-cb
mailto:bookquestions@oreilly.com
http://oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

CHAPTER 1

Constructing Types and Apps

One of the first things we do as developers is design, organize, and create new types.
This chapter helps with these tasks by offering several useful recipes for setting up the
project, managing object lifetime, and establishing patterns.

Establishing Architecture
When you’re first setting up a project, you have to think about the overall architec‐
ture. There’s a concept called separation of concerns wherein each part of an applica‐
tion has a specific purpose (e.g., the UI layer interacts with users, a business logic
layer manages rules, and a data layer interacts with a data source). Each layer has a
purpose or responsibilities and contains the code to perform its operations.

In addition to promoting more loosely coupled code, separation of concerns makes it
easier for developers to work with that code because it’s easier to find where a certain
operation occurs. This makes it easier to add new features and maintain existing
code. The benefits of this are higher quality applications and more productive work.
It pays to get started right, which is why we have Recipe 1.5.

Related to loosely coupling code, there’s inversion of control (IoC), which helps
decouple code and promotes testability. Recipe 1.2 explains how this works. When we
look at ensuring quality, in Chapter 3, you’ll see how IoC fits in to unit testing.

Applying Patterns
A lot of the code we write is Transaction Script, where the user interacts with a UI
and the code performs some type of create, read, update, or delete (CRUD) operation
in the database and returns the result. Other times, we have complex interactions

1

between objects that are difficult to organize. We need other patterns to solve these
hard problems.

This chapter presents a few useful patterns in a rather informal manner. The idea is
that you’ll have some code to rename and adapt to your purposes and a rationale on
when a given pattern would be useful. As you read through each pattern, try to think
about other code you’ve written or other situations where that pattern would have
simplified the code.

If you run into the problem of having different APIs to different systems and needing
to switch between them, you’ll be interested in reading Recipe 1.8. It shows how to
build a single interface to solve this problem.

Managing Object Lifetime
Other important tasks we perform relate to object lifetime—that is, instantiating
objects in memory, holding objects in memory for processing, and the subsequent
release of that memory when the object is no longer needed. Recipes 1.3 and 1.4 show
a couple of nice factory patterns that let you decouple object creation from code. This
fits in with the IoC concepts mentioned previously.

One way to manage object creation is through a fluid interface, where you can
include optional settings (via methods) and validate before object construction.

Another important object-lifetime consideration is disposal. Think about the draw‐
backs of excessive resource consumption, including memory use, file locks, and any
other object that holds operating system resources. These problems often result in
application crashes and are difficult to detect and fix. Performing proper resource
cleanup is so important that it’s the first recipe we’ll cover in the book.

1.1 Managing Object End-of-Lifetime
Problem
Your application is crashing because of excessive resource usage.

Solution
Here’s the object with the original problem:

using System;
using System.IO;

public class DeploymentProcess
{
 StreamWriter report = new StreamWriter("DeploymentReport.txt");

2 | Chapter 1: Constructing Types and Apps

 public bool CheckStatus()
 {
 report.WriteLine($"{DateTime.Now} Application Deployed.");

 return true;
 }
}

And here’s how to fix the problem:

using System;
using System.IO;

public class DeploymentProcess : IDisposable
{
 bool disposed;

 readonly StreamWriter report = new StreamWriter("DeploymentReport.txt");

 public bool CheckStatus()
 {
 report.WriteLine($"{DateTime.Now} Application Deployed.");

 return true;
 }

 protected virtual void Dispose(bool disposing)
 {
 if (!disposed)
 {
 if (disposing)
 {
 // disposal of purely managed resources goes here
 }

 report?.Close();
 disposed = true;
 }
 }

 ~DeploymentProcess()
 {
 Dispose(disposing: false);
 }

 public void Dispose()
 {
 Dispose(disposing: true);
 GC.SuppressFinalize(this);
 }
}

This is the Main method, using this object:

1.1 Managing Object End-of-Lifetime | 3

static void Main(string[] args)
{
 using (var deployer = new DeploymentProcess())
 {
 deployer.CheckStatus();
 }
}

Discussion
The problem in this code was with the StreamWriter report. Whenever you’re using
some type of resource, such as the report file reference, you need to release (or dis‐
pose) that resource. The specific problem here occurs because the app, through the
StreamWriter, requested a file handle from the Windows OS. This app owns that file
handle, and Windows expects the owning app to release the handle. If your app closes
without releasing that handle, Windows prevents all applications, including subse‐
quent running of your app, from accessing that file. In the worst case, everything
crashes in a hard-to-find scenario that involves multiple people over a number of
hours debugging a critical production problem. This occurs because Windows
believes that file is still in use.

The solution is to implement the dispose pattern, which involves adding code that
makes it easy to release resources. The solution code implements the IDisposable
interface. IDisposable only specifies the Dispose() method, without parameters,
and there’s more to be done than just adding that method, including another Dispose
method overload that keeps track of what type of disposal to do and an optional
finalizer.

Complicating the implementation is a field and parameter that control disposal logic:
disposed and disposing. The disposed field ensures that this object gets disposed
only one time. Inside the Dispose(bool) method, there’s an if statement, ensuring
that if disposed is true (the object has been disposed), then it won’t execute any dis‐
posal logic. The first time through Dispose(bool), disposed will be false and the
code in the if block will execute. Make sure that you also set disposed to true to
ensure this code doesn’t run anymore—the consequences of not doing so bring expo‐
sure to unpredictable errors like an ObjectDisposedException.

The disposing parameter tells Dispose(bool) how it’s being called. Notice that
Dispose() (without parameters) and the finalizer call Dispose(bool). When Dis
pose() calls Dispose(bool), disposing is true. This makes it easy for calling code, if
written properly, to instantiate DeploymentProcess in a using statement or wrap it in
the finally block of a try/finally.

The finalizer calls Dispose(bool) with disposing set to false, meaning that it isn’t
being run by calling application code. The Dispose(bool) method uses the dispos

4 | Chapter 1: Constructing Types and Apps

ing value to determine whether it should release managed resources. Unmanaged
resources are released regardless of whether Dispose() or the finalizer calls
Dispose(bool).

Let’s clarify what is happening with the finalizer. The .NET CLR garbage collector
(GC) executes an object’s finalizer when it cleans that object from memory. The GC
can make multiple passes over objects, calling finalizers being one of the last things it
does. Managed objects are instantiated and managed by the .NET CLR, and you don’t
have control over when they’re released, which could potentially result in out-of-
order releases. You have to check the disposing value to prevent an ObjectDisposed
Exception in case the dependent object was disposed by the GC first.

What the finalizer gives you is a way to clean up unmanaged resources. An unman‐
aged resource, such as the file handle that StreamWriter obtained, doesn’t belong to
the .NET CLR; it belongs to the Windows OS. There are situations where developers
might need to explicitly call into a Win32/64 dynamic link library (DLL) to get a han‐
dle to an OS or third-party device. The reason you need the finalizer is that if your
object doesn’t get disposed properly, there’s no other way to release that handle, which
could crash your system for the same reason we need to release managed objects. So,
the finalizer is a just-in-case mechanism to ensure the code that needs to release the
unmanaged resource will execute.

A lot of applications don’t have objects that use unmanaged resources. In that case,
don’t even add the finalizer. Having the finalizer adds overhead to the object because
the GC has to do accounting to recognize objects that do have finalizers and call them
in a multi-pass collection. Omitting the finalizer avoids this.

On a related note, remember to call GC.SuppressFinalize in the Dispose() method.
This is another optimization telling the GC to not call the finalizer for this object,
because all resources—managed and unmanaged—are released when the application
calls IDisposable.Dispose().

Generally, you should always call GC.SuppressFinalize in
Dispose(), even if the class doesn’t have a finalizer. That said, there
are some nuances that you might be interested in. If a class is both
sealed and doesn’t have a finalizer, you can safely omit the call to
GC.SuppressFinalize. However, classes that aren’t sealed could
potentially be inherited by another class that does include a final‐
izer. In this case, calling GC.SuppressFinalize protects against
improper implementations.
For classes without finalizers, GC.SuppressFinalize has no effect.
If you chose to leave out the call to GC.SuppressFinalize and the
class has a finalizer, the CLR will call that finalizer.

1.1 Managing Object End-of-Lifetime | 5

The Main method shows how to properly use the DeploymentProcess object. It
instantiates and wraps the object in a using statement. The object exists in memory
until the using statement block ends. At that time, the program calls the Dispose()
method.

1.2 Removing Explicit Dependencies
Problem
Your application is tightly coupled and difficult to maintain.

Solution
Define the types you need:

public class DeploymentArtifacts
{
 public void Validate()
 {
 System.Console.WriteLine("Validating...");
 }
}

public class DeploymentRepository
{
 public void SaveStatus(string status)
 {
 System.Console.WriteLine("Saving status...");
 }
}

interface IDeploymentService
{
 void PerformValidation();
}

public class DeploymentService : IDeploymentService
{
 readonly DeploymentArtifacts artifacts;
 readonly DeploymentRepository repository;

 public DeploymentService(
 DeploymentArtifacts artifacts,
 DeploymentRepository repository)
 {
 this.artifacts = artifacts;
 this.repository = repository;
 }

 public void PerformValidation()

6 | Chapter 1: Constructing Types and Apps

 {
 artifacts.Validate();
 repository.SaveStatus("status");
 }
}

And start the application like this:

using Microsoft.Extensions.DependencyInjection;
using System;

class Program
{
 readonly IDeploymentService service;

 public Program(IDeploymentService service)
 {
 this.service = service;
 }

 static void Main()
 {
 var services = new ServiceCollection();

 services.AddTransient<DeploymentArtifacts>();
 services.AddTransient<DeploymentRepository>();
 services.AddTransient<IDeploymentService, DeploymentService>();

 ServiceProvider serviceProvider =
 services.BuildServiceProvider();

 IDeploymentService deploymentService =
 serviceProvider.GetRequiredService<IDeploymentService>();

 var program = new Program(deploymentService);

 program.StartDeployment();
 }

 public void StartDeployment()
 {
 service.PerformValidation();
 Console.WriteLine("Validation complete - continuing...");
 }
}

Discussion
The term tightly coupled often means that one piece of code is overburdened with the
responsibility of instantiating the types (dependencies) it uses. This requires the code
to know how to construct, manage lifetime, and contain logic for dependencies. This
distracts from the purpose of the code in solving the problem that it exists for. It

1.2 Removing Explicit Dependencies | 7

duplicates instantiation of dependencies in different classes. This makes the code brit‐
tle because changes in dependency interfaces affect all other code that needs to
instantiate that dependency. Additionally, code that instantiates its dependencies
makes it difficult, if not impossible, to perform proper unit testing.

The solution is dependency injection, which is a technique to define dependency type
instantiation in one place and expose a service that other types can use to obtain
instances of those dependencies. There are a couple of ways to perform dependency
injection: service locator and inversion of control (IoC). Which to use and when is an
active debate; let’s avoid venturing into theoretical territory. To keep things simple,
this solution uses IoC, which is a common and straightforward approach.

The specific solution requires that you have types that rely on other dependency
types, configure type constructors to accept dependencies, reference a library to help
manage the IoC container, and use the container to declare how to instantiate types.
The following paragraphs explain how this works. Figure 1-1 shows the relationship
of objects and sequence of IoC operations for the solution.

Figure 1-1. IoC for the solution

The solution is a utility to help manage a deployment process, validating whether the
deployment process is configured properly. It has a DeploymentService class that
runs the process. Notice that the DeploymentService constructor accepts the classes
DeploymentArtifacts and DeploymentRepository. DeploymentService does not
instantiate these classes—rather, they are injected.

To inject these classes, you can use an IoC container, which is a library that helps to
automatically instantiate types and to automatically instantiate and provide instances

8 | Chapter 1: Constructing Types and Apps

of dependency types. The IoC container in the solution, as shown in the using decla‐
ration, is the Microsoft.Extensions.DependencyInjection namespace, which you
can reference as the NuGet package by the same name.

While we want to inject all dependencies for every type in the application, you must
still instantiate the IoC container directly, which is why the Main method instantiates
ServiceCollection as services. Then use the services instance to add all of the
dependencies, including DeploymentService.

The IoC container can help manage the lifetime of objects. This solution uses
AddTransient, which means that the container should create a new instance every
time its type is requested. A couple of other examples of managing object lifetime are
AddSingleton, which instantiates an object only one time and passes that one
instance to all objects, and AddScoped, which gives more control over the lifetime of
the object. In ASP.NET, AddScoped is set to the current request. Over time, you’ll
want to think more about what the lifetime of your objects should be and investigate
these options in more depth. For now, it’s simple to get started with AddTransient.

The call to BuildServiceProvider converts services, a ServiceCollection, into a
ServiceProvider. The term IoC container refers to this ServiceProvider instance—
it instantiates and locates types to be injected.

You can see the container in action, calling GetRequiredService to return an
instance implementing IDeploymentService. Going back to the ServiceCollection,
notice that there’s an AddTransient associating the DeploymentService class with the
IDeploymentService interface. This means that GetRequiredService will return an
instance of DeploymentService.

Finally, Main instantiates Program, with the new DeploymentService instance.

Going back to the constructor for DeploymentService, you can see that it expects to
be called with instances for DeploymentArtifacts and DeploymentRepository.
Because we used the IoC container to instantiate DeploymentService, the IoC con‐
tainer also knows how to instantiate its dependencies, which were also added to the
ServiceCollection, with calls to AddTransient. This solution only used three types;
you can build object dependency graphs much deeper than this.

Also, notice how the DeploymentService constructor saves the injected instances in
readonly fields, making them available for use by DeploymentService members.

The beauty of IoC is that instantiation only happens in one place, and you don’t have
to code all of that in your constructors or in members that need a new instance of a
dependency. This makes your code more loosely coupled and maintainable. It also
opens the opportunity for higher quality by making the type more unit testable.

1.2 Removing Explicit Dependencies | 9

See Also
Recipe 3.1, “Writing a Unit Test”

1.3 Delegating Object Creation to a Class
Problem
You’re using IoC, the type you’re trying to instantiate doesn’t have an interface, and
you have complex construction requirements.

Solution
We want to instantiate this class:

using System;

public class ThirdPartyDeploymentService
{
 public void Validate()
 {
 Console.WriteLine("Validated");
 }
}

We’ll use this class for IoC:

public interface IValidatorFactory
{
 ThirdPartyDeploymentService CreateDeploymentService();
}

And here’s the IValidatorFactory implementation:

public class ValidatorFactory : IValidatorFactory
{
 public ThirdPartyDeploymentService CreateDeploymentService()
 {
 return new ThirdPartyDeploymentService();
 }
}

Then instantiate the factory like this:

public class Program
{
 readonly ThirdPartyDeploymentService service;

 public Program(IValidatorFactory factory)
 {
 service = factory.CreateDeploymentService();
 }

10 | Chapter 1: Constructing Types and Apps

 static void Main()
 {
 var factory = new ValidatorFactory();
 var program = new Program(factory);
 program.PerformValidation();
 }

 void PerformValidation()
 {
 service.Validate();
 }
}

Discussion
As discussed in Recipe 1.2, IoC is a best practice because it decouples dependencies,
making code easier to maintain, more adaptable, and easier to test. The problem is
that there are exceptions and situations that cause difficulties with the best of plans.
One of these problems occurs when trying to use a third-party API without an
interface.

The solution shows a ThirdPartyDeploymentService class. You can see the code and
what it does. In reality, even if you can read the code through reflection or disassem‐
bler, it doesn’t help because you can’t add your interface. Even if ThirdPartyDeploy
mentService were open source, you would have to weigh the decision to fork the
library for your own modifications—the trade-off being that your modifications are
brittle in the face of new features and maintenance to the original open source library.
An example is the System.Net.HttpClient class in the .NET Framework, which
doesn’t have an interface. Ultimately, you’ll need to evaluate the situation and make a
decision that works for you, but the factory class described here can be an effective
work-around.

To see how a factory class works, observe the IValidatorFactory interface. This is
the interface we’ll use for IoC. Next, examine how the ValidatorFactory class imple‐
ments the IValidatorFactory interface. Its CreateDeploymentService instantiates
and returns the ThirdPartyDeploymentService. This is what a factory does: it creates
objects for us.

This is related to the proxy pattern. The ValidatorFactory
controls access to a ThirdPartyDeploymentService instance. How‐
ever, rather than returning an object to control access to members
of ThirdPartyDeploymentService, CreateDeploymentService

returns a direct ThirdPartyDeploymentService instance.

1.3 Delegating Object Creation to a Class | 11

To simplify this example, the code doesn’t use an IoC container—though it would be
normal to use factories alongside IoC. Instead, the Main method instantiates
ValidatorFactory and passes that instance to the Program constructor, which is the
important part of this example.

Examine how the constructor takes the IValidatorFactory reference and calls
CreateDeploymentService. Now we’ve been able to inject the dependency and main‐
tain the loose coupling we sought.

Another benefit is that since the ThirdPartyDeploymentService is instantiated in the
factory class, you can make any future changes to class instantiation without affecting
consuming code.

See Also
Recipe 1.2, “Removing Explicit Dependencies”

1.4 Delegating Object Creation to a Method
Problem
You want a plug-in framework and need to structure object instantiation someplace
other than application logic.

Solution
Here’s the abstract base class with the object creation contract:

public abstract class DeploymentManagementBase
{
 IDeploymentPlugin deploymentService;

 protected abstract IDeploymentPlugin CreateDeploymentService();

 public bool Validate()
 {
 if (deploymentService == null)
 deploymentService = CreateDeploymentService();

 return deploymentService.Validate();
 }
}

These are a couple of classes that instantiate associated plug-in classes:

public class DeploymentManager1 : DeploymentManagementBase
{
 protected override IDeploymentPlugin CreateDeploymentService()
 {

12 | Chapter 1: Constructing Types and Apps

 return new DeploymentPlugin1();
 }
}

public class DeploymentManager2 : DeploymentManagementBase
{
 protected override IDeploymentPlugin CreateDeploymentService()
 {
 return new DeploymentPlugin2();
 }
}

The plug-in classes implement the IDeploymentPlugin interface:

public interface IDeploymentPlugin
{
 bool Validate();
}

And here are the plug-in classes being instantiated:

public class DeploymentPlugin1 : IDeploymentPlugin
{
 public bool Validate()
 {
 Console.WriteLine("Validated Plugin 1");
 return true;
 }
}

public class DeploymentPlugin2 : IDeploymentPlugin
{
 public bool Validate()
 {
 Console.WriteLine("Validated Plugin 2");
 return true;
 }
}

Finally, here’s how it all fits together:

class Program
{
 readonly DeploymentManagementBase[] deploymentManagers;

 public Program(DeploymentManagementBase[] deploymentManagers)
 {
 this.deploymentManagers = deploymentManagers;
 }

 static DeploymentManagementBase[] GetPlugins()
 {
 return new DeploymentManagementBase[]
 {

1.4 Delegating Object Creation to a Method | 13

 new DeploymentManager1(),
 new DeploymentManager2()
 };
 }

 static void Main()
 {
 DeploymentManagementBase[] deploymentManagers = GetPlugins();

 var program = new Program(deploymentManagers);

 program.Run();
 }

 void Run()
 {
 foreach (var manager in deploymentManagers)
 manager.Validate();
 }
}

Discussion
Plug-in systems are all around us. Excel can consume and emit different document
types, Adobe works with multiple image types, and Visual Studio Code has numerous
extensions. These are all plug-in systems, and whether the only plug-ins available are
via vendor or third party, they all leverage the same concept—the code must be able
to adapt to handling a new abstract object type.

While the previous examples are ubiquitous in our daily lives, many developers won’t
be building those types of systems. That said, the plug-in model is a powerful oppor‐
tunity for making our applications extensible. Application integration is a frequent
use case where your application needs to consume documents from customers, other
departments, or other businesses. Sure, web services and other types of APIs are pop‐
ular, but needing to consume an Excel spreadsheet is normal. As soon as you do that,
someone has data in a different format, like CSV, JSON, tab delimited, and more.
Another side of the story is the frequent need to export data in a format that multiple
users need to consume.

In this spirit, the solution demonstrates a situation where a plug-in system allows an
application to add support for new deployment types. This is a typical situation where
you’ve built the system to handle the deployment artifacts that you know about, but
the system is so useful that everyone else wants to add their own deployment logic,
which you never knew about when original requirements were written.

In the solution, each of the DeploymentManagers implement the abstract base class,
DeploymentManagementBase. DeploymentManagementBase orchestrates the logic, and
the derived DeploymentManager classes are simply factories for their associated

14 | Chapter 1: Constructing Types and Apps

plugins. Notice that DeploymentManagementBase uses polymorphism to let derived
classes instantiate their respective plug-in classes.

If this is getting a little complex, you might want to review Recipes
1.2 and 1.3. This is one level of abstraction above that.

The solution shows two classes that implement the IDeploymentPlugin interface. The
DeploymentManagementBase class consumes the IDeploymentPlugin interface, dele‐
gating calls to its methods to the plug-in classes that implement that interface. Notice
how Validate calls Validate on the IDeploymentPlugin instance.

The Program has no knowledge of the plug-in classes. It operates on instances of
DeploymentManagementBase, as demonstrated where Main calls GetPlugins and
receives an array of DeploymentManagementBase instances. Program doesn’t care
about the plug-ins. For demo simplicity, GetPlugins is a method in Program but
could be another class with a mechanism for selecting which plug-ins to use. Notice
in the Run method how it iterates through DeploymentManagementBase instances.

Making DeploymentManagementBase implement an interface might
make IoC more consistent if you’re using interfaces everywhere
else. That said, an abstract base class can often work for most IoC
containers, mocking, and unit testing tools.

To recap, the DeploymentManagementBase encapsulates all functionality and delegates
work to plug-in classes. The code that makes the plug-in are the deployment manag‐
ers, plug-in interface, and plug-in classes. The consuming code only works with a
collection of DeploymentManagementBase and is blissfully unaware of the specific
plug-in implementations.

Here’s where the power comes in. Whenever you or any third party you allow wants
to extend the system for a new type of deployment, they do this:

1. Create a new DeploymentPlugin class that implements your IDeploymentPlugin
interface.

2. Create a new DeploymentManagement class that derives from DeploymentManage
mentBase.

3. Implement the DeploymentManagement.CreateDeploymentService method to
instantiate and return the new DeploymentPlugin.

1.4 Delegating Object Creation to a Method | 15

Finally, the GetPlugins method, or some other logic of your choosing, would add
that new code to its collections of plug-ins to operate on.

See Also
Recipe 1.2, “Removing Explicit Dependencies”

Recipe 1.3, “Delegating Object Creation to a Class”

1.5 Designing Application Layers
Problem
You’re setting up a new application and are unsure of how to structure the project.

Solution
Here’s a data access layer class:

public class GreetingRepository
{
 public string GetNewGreeting() => "Welcome!";

 public string GetVisitGreeting() => "Welcome back!";
}

Here’s a business logic layer class:

public class Greeting
{
 GreetingRepository greetRep = new GreetingRepository();

 public string GetGreeting(bool isNew) =>
 isNew ? greetRep.GetNewGreeting() : greetRep.GetVisitGreeting();
}

These two classes are part of the UI layer:

public class SignIn
{
 Greeting greeting = new Greeting();

 public void Greet()
 {
 Console.Write("Is this your first visit? (true/false): ");
 string newResponse = Console.ReadLine();

 bool.TryParse(newResponse, out bool isNew);

 string greetResponse = greeting.GetGreeting(isNew);

16 | Chapter 1: Constructing Types and Apps

 Console.WriteLine($"\n*\n* {greetResponse} \n*\n");
 }
}

public class Menu
{
 public void Show()
 {
 Console.WriteLine(
 "*------*\n" +
 "* Menu *\n" +
 "*------*\n" +
 "\n" +
 "1. ...\n" +
 "2. ...\n" +
 "3. ...\n" +
 "\n" +
 "Choose: ");
 }
}

This is the application entry point (part of the UI layer):

class Program
{
 SignIn signIn = new SignIn();
 Menu menu = new Menu();

 static void Main()
 {
 new Program().Start();
 }

 void Start()
 {
 signIn.Greet();
 menu.Show();
 }
}

Discussion
There are endless ways to set up and plan the structure of new projects, with some
approaches better than others. Rather than viewing this discussion as a definitive
conclusion, think of it as a few options with trade-offs that help you think about your
own approach.

The antipattern here is Big Ball of Mud (BBoM) architecture. BBoM is where a devel‐
oper opens a single project and starts adding all the code at the same layer in the
application. While this approach might help knock out a quick prototype, it has
severe complications in the long run. Over time most apps need new features and

1.5 Designing Application Layers | 17

maintenance to fix bugs. What happens is that the code begins to run together and
there’s often much duplication, commonly referred to as spaghetti code. Seriously, no
one wants to maintain code like this, and you should avoid it.

When under time pressure, it’s easy to think that creating a quick
prototype might be an acceptable use of time. However, resist this
urge. The cost of maintenance on a BBoM prototype project is
high. The time required to work with spaghetti code to add a new
feature or fix a bug quickly wipes out any perceived up-front gains
from a sloppy prototype. Because of duplication, fixing a bug in
one place leaves the same bug in other parts of the application. This
means not only that a developer has to fix the bug multiple times
but that the entire life cycle of QA, deployment, customer discov‐
ery, help desk service, and management wastes time on what would
be multiple unnecessary cycles. The content in this section helps
you avoid this antipattern.

The primary concept to grasp here is separation of concerns. You’ll often hear this
simplified as a layered architecture where you have UI, business logic, and data layers,
with each section named for the type of code placed in that layer. This section uses
the layered approach with the goal of showing how to achieve separation of concerns
and associated benefits.

Sometimes the idea of a layered architecture makes people think
they must route application communication through the layers or
that certain operations are restricted to their layer. This isn’t quite
true or practical. For example, business logic can be found in dif‐
ferent layers, such as rules for validating user input in the UI layer
as well as logic for how to process a certain request. Another exam‐
ple of exceptions to communication patterns is when a user needs
to select a set of operations on a form—there isn’t any business
logic involved and the UI layer can request the list of items from
the data layer directly. What we want is separation of concerns to
enhance the maintainability of the code; any dogmatic/idealistic
restrictions that don’t make sense run counter to that goal.

The solution starts with a data access layer, GreetingRepository. This simulates the
repository pattern, which is an abstraction so that calling code doesn’t need to think
about how to retrieve the data. Ideally, creating a separate data project promises an
additional benefit of reusing that data access layer in another project that needs access
to the same data. Sometimes you get reuse and other times you don’t, though you
always get the benefits of reducing duplication and knowing where the data access
logic resides.

18 | Chapter 1: Constructing Types and Apps

The business logic layer has a Greeting class. Notice how it uses the isNew parameter
to determine which method of GreetingRepository to call. Anytime you find your‐
self needing to write logic for how to handle a user request, consider putting that
code in another class that is considered part of the business logic layer. If you already
have code like this, refactor it out into a separate object named for the type of logic it
needs to handle.

Finally, there’s the UI layer, which is composed of the SignIn and Menu classes. These
classes handle the interaction with the user, yet they delegate any logic to the business
logic layer. Program might be considered part of the UI layer, though it’s only orches‐
trating interaction/navigation between other UI layer classes and doesn’t perform UI
operations itself.

The way I wrote the solution was so you would see the definition of
a class before it was used. However, when actually doing the design,
you might start with the UI layer and then work down through
business logic and data access.

There are a couple of dimensions to separation of concerns in this code. Greeting
Repository is only concerned with data, and Greeting data in particular. For exam‐
ple, if the app needed data to show in a Menu, you would need another class called
MenuRepository that did CRUD operations on Menu data. Greeting only handles
business logic for Greeting data. If a Menu had its own business logic, you might con‐
sider a separate business logic layer class for that, but only if it made sense. As you
can see in the UI layer, SignIn only handles interaction with the user for signing into
the app, and Menu only handles interaction with the user for displaying and choosing
what they want to do. The beauty is that now you or anyone else can easily go into the
application and find the code concerning the subject you need to address.

Figures 1-2, 1-3, and 1-4 show how you might structure each layer into a Visual Stu‐
dio solution. Figure 1-2 is for a very simple app, like a utility that is unlikely to have
many features. In this case, it’s OK to keep the layers in the same project because
there isn’t a lot of code and anything extra doesn’t have tangible benefit.

1.5 Designing Application Layers | 19

Figure 1-2. Project layout for a simple app

Figure 1-3 shows how you might structure a project that’s a little larger and will grow
over time, which I’ll loosely call midsize for the sake of discussion. Notice that it has a
separate data access layer. The purpose of that is potential reuse. Some projects offer
different UIs for different customers. For example, there might be a chatbot or mobile
app that accesses the data for users but a web app for administrators. Having the data
access layer as a separate project makes this possible. Notice how SystemApp.Console
has an assembly reference to SystemApp.Data.

Figure 1-3. Project layout to separate UI and data layers

For larger enterprise apps, you’ll want to break the layers apart, as shown in
Figure 1-4. The problem to solve here is that you want a cleaner break between sec‐
tions of code to encourage loose coupling. Large applications often become complex
and hard to manage unless you control the architecture in a way that encourages best
practices.

20 | Chapter 1: Constructing Types and Apps

Figure 1-4. Project layout for separation of concerns

For the enterprise scenario, this example is small. However, imagine the complexity of
a growing application. As you add new business logic, you’ll begin finding code that
gets reused. Also, you’ll naturally have some code that can stand on its own, like a
service layer for accessing an external API. The opportunity here is to have a reusable
library that might be useful in other applications. Therefore, you’ll want to refactor
anything reusable into its own project. On a growing project, you can rarely antici‐
pate every aspect or feature that an app will support, and watching for these changes
and refactoring will help to keep your code, project, and architecture healthier.

1.6 Returning Multiple Values from a Method
Problem
You need to return multiple values from a method, and using classic approaches such
as out parameters or returning a custom type doesn’t feel intuitive.

Solution
ValidationStatus has a deconstructor:

public class ValidationStatus
{
 public bool Deployment { get; set; }
 public bool SmokeTest { get; set; }
 public bool Artifacts { get; set; }

 public void Deconstruct(

1.6 Returning Multiple Values from a Method | 21

 out bool isPreviousDeploymentComplete,
 out bool isSmokeTestComplete,
 out bool areArtifactsReady)
 {
 isPreviousDeploymentComplete = Deployment;
 isSmokeTestComplete = SmokeTest;
 areArtifactsReady = Artifacts;
 }
}

The DeploymentService shows how to return a tuple:

public class DeploymentService
{
 public
 (bool deployment, bool smokeTest, bool artifacts)
 PrepareDeployment()
 {
 ValidationStatus status = Validate();

 (bool deployment, bool smokeTest, bool artifacts) = status;

 return (deployment, smokeTest, artifacts);
 }

 ValidationStatus Validate()
 {
 return new ValidationStatus
 {
 Deployment = true,
 SmokeTest = true,
 Artifacts = true
 };
 }
}

And here’s how to consume the returned tuple:

class Program
{
 readonly DeploymentService deployment = new DeploymentService();
 static void Main(string[] args)
 {
 new Program().Start();
 }

 void Start()
 {
 (bool deployed, bool smokeTest, bool artifacts) =
 deployment.PrepareDeployment();

 Console.WriteLine(
 $"\nDeployment Status:\n\n" +

22 | Chapter 1: Constructing Types and Apps

 $"Is Previous Deployment Complete? {deployed}\n" +
 $"Is Previous Smoke Test Complete? {smokeTest}\n" +
 $"Are artifacts for this deployment ready? {artifacts}\n\n" +
 $"Can deploy: {deployed && smokeTest && artifacts}");
 }
}

Discussion
Historically, the typical way to return multiple values from a method was to create a
custom type or add multiple out parameters. It always felt wasteful to create a custom
type that would only be used one time for the purpose of returning values. The other
option, to use multiple out parameters, felt clunky too. Using a tuple is more elegant.
A tuple is a value type that lets you group data into a single object without declaring a
separate type.

The tuple type described in this section was a new feature of C# 7.0.
It aliases the .NET ValueTuple, which is a mutable value type
whose members are fields. In contrast, the .NET Framework has a
Tuple class, which is an immutable reference type whose members
are properties. Both ValueTuple and Tuple named members
Item1, Item2, …, ItemN; in contrast, you’re free to provide more
meaningful names for C# tuple members.
If using a version of .NET prior to 4.7, you must explicitly refer‐
ence the System.ValueTuple NuGet package.

The solution shows a couple of different aspects of tuples, deconstruction, and how to
return a tuple from a method. The ValidationStatus class has a Deconstruct
method and C# uses that to produce a tuple from an instance of the class. This class
wasn’t strictly necessary for this example, but it does demonstrate an interesting way
of converting a class to a tuple.

The DeploymentService class shows how to return a tuple. Notice that the return
type of the PrepareDeployment method is a tuple. The property names in the tuple
return type are optional, though meaningful variable names could make the code eas‐
ier to read.

The code calls Validate, which returns an instance of ValidationStatus. The next
line, assigning status to the tuple, uses the deconstructor to return a tuple instance.
PrepareDeployment uses those values to return a new tuple to the caller.

The solution implementation of PrepareDeployment shows the mechanics of work‐
ing with tuples, which is useful for learning, though not very elegant. In practice, it
would be cleaner to return status from the method because the deconstructor will
run implicitly.

1.6 Returning Multiple Values from a Method | 23

The Start method, in Program, shows how to call PrepareDeployment and consume
the tuple it returns.

1.7 Converting from Legacy to Strongly Typed Classes
Problem
You have a legacy type that operates on values of type object and need to modernize
to a strongly typed implementation.

Solution
Here’s a Deployment class that we’ll be using:

public class Deployment
{
 string config;

 public Deployment(string config)
 {
 this.config = config;
 }

 public bool PerformHealthCheck()
 {
 Console.WriteLine(
 $"Performed health check for config {config}.");
 return true;
 }
}

And here’s a legacy CircularQueue collection:

public class CircularQueue
{
 int current = 0;
 int last = 0;
 object[] items;

 public CircularQueue(int size)
 {
 items = new object[size];
 }

 public void Add(object obj)
 {
 if (last >= items.Length)
 throw new IndexOutOfRangeException();

 items[last++] = obj;

24 | Chapter 1: Constructing Types and Apps

 }

 public object Next()
 {
 current %= last;
 object item = items[current];
 current++;

 return item;
 }
}

This code shows how to use the legacy collection:

public class HealthChecksObjects
{
 public void PerformHealthChecks(int cycles)
 {
 CircularQueue checks = Configure();

 for (int i = 0; i < cycles; i++)
 {
 Deployment deployment = (Deployment)checks.Next();
 deployment.PerformHealthCheck();
 }
 }

 private CircularQueue Configure()
 {
 var queue = new CircularQueue(5);

 queue.Add(new Deployment("a"));
 queue.Add(new Deployment("b"));
 queue.Add(new Deployment("c"));

 return queue;
 }
}

Next, here’s the legacy collection refactored as a generic collection:

public class CircularQueue<T>
{
 int current = 0;
 int last = 0;
 T[] items;

 public CircularQueue(int size)
 {
 items = new T[size];
 }

 public void Add(T obj)
 {

1.7 Converting from Legacy to Strongly Typed Classes | 25

 if (last >= items.Length)
 throw new IndexOutOfRangeException();

 items[last++] = obj;
 }

 public T Next()
 {
 current %= last;
 T item = items[current];
 current++;

 return item;
 }
}

With code that shows how to use the new generic collection:

public class HealthChecksGeneric
{
 public void PerformHealthChecks(int cycles)
 {
 CircularQueue<Deployment> checks = Configure();

 for (int i = 0; i < cycles; i++)
 {
 Deployment deployment = checks.Next();
 deployment.PerformHealthCheck();
 }
 }

 private CircularQueue<Deployment> Configure()
 {
 var queue = new CircularQueue<Deployment>(5);

 queue.Add(new Deployment("a"));
 queue.Add(new Deployment("b"));
 queue.Add(new Deployment("c"));

 return queue;
 }
}

Here’s demo code to show both collections in action:

class Program
{
 static void Main(string[] args)
 {
 new HealthChecksObjects().PerformHealthChecks(5);
 new HealthChecksGeneric().PerformHealthChecks(5);
 }
}

26 | Chapter 1: Constructing Types and Apps

Discussion
The first version of C# didn’t have generics. Instead, we had a System.Collections
namespace with collections like Dictionary, List, and Stack that operated on
instances of type object. If the instances in the collection were reference types, the
conversion performance to/from object was negligible. However, if you wanted to
manage a collection of value types, the boxing/unboxing performance penalty
became more excruciating the larger the collection got or the more operations
performed.

Microsoft had always intended to add generics, and they finally arrived in C# 2. How‐
ever, in the meantime, there was a ton of nongeneric code written. Imagine all of the
new object-based collections that developers needed to write on their own for things
like sets, priority queues, and tree data structures. Add to that types like delegates,
which were the primary means of method reference and async communication and
operated on objects. There’s a long list of nongeneric code that’s been written, and
chances are that you’ll encounter some of it as you progress through your career.

As C# developers, we appreciate the benefits of strongly typed code, making it easier
to find and fix compile-time errors, making an application more maintainable, and
improving quality. For this reason, you might have a strong desire to refactor a given
piece of nongeneric code so that it too is strongly typed with generics.

The process is basically this: whenever you see type object, convert it to generic.

The solution shows a Deployment object that performs a health check on a deployed
artifact. Since we have multiple artifacts, we also need to hold multiple Deployment
instances in a collection. The collection is a (partially implemented) circular queue,
and there’s a HealthCheck class that loops through the queue and periodically per‐
forms a health check with the next Deployment instance.

HealthCheckObject operates on old nongeneric code and HealthCheckGeneric oper‐
ates on new generic code. The difference between the two is that the HealthCheck
Object Configure method instantiates a nongeneric CircularQueue, and the Health
CheckGeneric Configure method instantiates a generic CircularQueue<T>. Our pri‐
mary task is to convert CircularQueue to CircularQueue<T>.

Since we’re working with a collection, the first task is to add the type parameter to the
class, CircularQueue<T>. Then look for anywhere the code uses the object type and
convert that to the class type parameter, T:

1. Convert the object items[] field to T items[].
2. In the constructor, instantiate a new T[] instead of object[].
3. Change the Add parameter from object to T.

1.7 Converting from Legacy to Strongly Typed Classes | 27

4. Change the Next return type from object to T.
5. In Next, change the object item variable to T item.

After changing object types to T, you have a new strongly typed generic collection.

The Program class demonstrates how both of these collections work.

1.8 Making Classes Adapt to Your Interface
Problem
You have a third-party library with similar functionality as your code, but it doesn’t
have the same interface.

Solution
This is the interface we want to work with:

public interface IDeploymentService
{
 void Validate();
}

Here are a couple of classes that implement that interface:

public class DeploymentService1 : IDeploymentService
{
 public void Validate()
 {
 Console.WriteLine("Deployment Service 1 Validated");
 }
}

public class DeploymentService2 : IDeploymentService
{
 public void Validate()
 {
 Console.WriteLine("Deployment Service 2 Validated");
 }
}

Here’s a third-party class that doesn’t implement IDeploymentService:

public class ThirdPartyDeploymentService
{
 public void PerformValidation()
 {
 Console.WriteLine("3rd Party Deployment Service 1 Validated");
 }
}

28 | Chapter 1: Constructing Types and Apps

This is the adapter that implements IDeploymentService:

public class ThirdPartyDeploymentAdapter : IDeploymentService
{
 ThirdPartyDeploymentService service = new ThirdPartyDeploymentService();

 public void Validate()
 {
 service.PerformValidation();
 }
}

This code shows how to include the third-party service by using the adapter:

class Program
{
 static void Main(string[] args)
 {
 new Program().Start();
 }

 void Start()
 {
 List<IDeploymentService> services = Configure();

 foreach (var svc in services)
 svc.Validate();
 }

 List<IDeploymentService> Configure()
 {
 return new List<IDeploymentService>
 {
 new DeploymentService1(),
 new DeploymentService2(),
 new ThirdPartyDeploymentAdapter()
 };
 }
}

Discussion
An adapter is a class that wraps another class but exposes the functionality of the
wrapped class with the interface you need.

There are various situations where the need for an adapter class comes into play.
What if you have a group of objects that implement an interface and want to use a
third-party class that doesn’t match the interface that your code works with? What if
your code is written for a third-party API, like a payment service, and you know you
want to eventually switch to a different provider with a different API? What if you
need to use native code via Platform Invocation Services (P/Invoke) or Component

1.8 Making Classes Adapt to Your Interface | 29

Object Model (COM) interop and didn’t want the details of that interface to bleed
into your code? These scenarios are all good candidates for considering an adapter.

The solution has DeploymentService classes that implement IDeploymentService.
You can see in the Program Start method that it only operates on instances that
implement IDeploymentService.

Sometime later, you encounter the need to integrate ThirdPartyDeploymentService
into the app. However, it doesn’t implement IDeploymentService, and you don’t have
the code for ThirdPartyDeploymentService.

The ThirdPartyDeploymentAdapter class solves the problem. It implements the
IDeploymentService interface and instantiates its own copy of ThirdPartyDeploy
mentService, and the Validate method delegates the call to ThirdPartyDeployment
Service. Notice that the Program Configure method adds an instance of ThirdParty
DeploymentAdapter to the collection that Start operates on.

This was a demo to show you how to design an adapter. In practice, the Perform
Validation method of ThirdPartyDeploymentService likely has different parame‐
ters and a different return type. The ThirdPartyDeploymentAdapter Validate
method will be responsible for preparing arguments and reshaping return values to
ensure they conform to the proper IDeploymentService interface.

1.9 Designing a Custom Exception
Problem
The .NET Framework library doesn’t have an exception type that fits your
requirements.

Solution
This is a custom exception:

[Serializable]
public class DeploymentValidationException : Exception
{
 public DeploymentValidationException() :
 this("Validation Failed!", null, ValidationFailureReason.Unknown)
 {
 }

 public DeploymentValidationException(
 string message) :
 this(message, null, ValidationFailureReason.Unknown)
 {
 }

30 | Chapter 1: Constructing Types and Apps

 public DeploymentValidationException(
 string message, Exception innerException) :
 this(message, innerException, ValidationFailureReason.Unknown)
 {
 }

 public DeploymentValidationException(
 string message, ValidationFailureReason reason) :
 this(message, null, reason)
 {
 }

 public DeploymentValidationException(
 string message,
 Exception innerException,
 ValidationFailureReason reason) :
 base(message, innerException)
 {
 Reason = reason;
 }

 public ValidationFailureReason Reason { get; set; }

 public override string ToString()
 {
 return
 base.ToString() +
 $" - Reason: {Reason} ";
 }
}

And this is an enum type for a property on that exception:

public enum ValidationFailureReason
{
 Unknown,
 PreviousDeploymentFailed,
 SmokeTestFailed,
 MissingArtifacts
}

This code shows how to throw the custom exception:

public class DeploymentService
{
 public void Validate()
 {
 throw new DeploymentValidationException(
 "Smoke test failed - check with qa@example.com.",
 ValidationFailureReason.SmokeTestFailed);
 }
}

1.9 Designing a Custom Exception | 31

And this code catches the custom exception:

class Program
{
 static void Main()
 {
 try
 {
 new DeploymentService().Validate();
 }
 catch (DeploymentValidationException ex)
 {
 Console.WriteLine(
 $"Message: {ex.Message}\n" +
 $"Reason: {ex.Reason}\n" +
 $"Full Description: \n {ex}");
 }
 }
}

Discussion
The beautiful thing about C# exceptions are that they’re strongly typed. When your
code catches them, you can write specific handling logic for just that type of excep‐
tion. The .NET Framework has a few exceptions, like ArgumentNullException, that
get some reuse (you can throw yourself) in the average code base, but often you’ll
need to throw an exception with the semantics and data that gives a developer a fairer
chance of figuring out why a method couldn’t complete its intended purpose.

The exception in the solution is DeploymentValidationException, which indicates a
problem related to the deployment process during the validation phase. It derives
from Exception. Depending on how extensive your custom exception framework is,
you could create your own base exception for a hierarchy and classify a derived
exception tree from that. The benefit is that you would have flexibility in catch blocks
to catch more general or specific exceptions as necessary. That said, if you only need a
couple of custom exceptions, the extra design work of an exception hierarchy might
be overkill.

The first three constructors mirror the Exception class options for message and inner
exception. You’ll also want custom constructors for instantiating with your custom
data.

32 | Chapter 1: Constructing Types and Apps

In the past, there’s been discussion of whether a custom exception
should derive from Exception or ApplicationException, where
Exception was for .NET-type hierarchies and ApplicationExcep
tion was for custom exception hierarchies. However, the distinc‐
tion blurred over time with some .NET Framework types deriving
from both with no apparent consistency or reason. So, deriving
from Exception seems to be fine these days.

DeploymentValidationException has a property, of the enum type Validation
FailureReason. Besides having semantics unique to the reason for throwing an
exception, another purpose of a custom exception is to include important informa‐
tion for exception handling and/or debugging.

Overriding ToString is also a good idea. Logging frameworks might just receive the
Exception reference, resulting in a call to ToString. As in this example, you’ll want
to ensure your custom data gets included in the string output. This ensures people
can read the full state of the exception, along with the stack trace.

The Program Main method demonstrates how nice it is to be able to handle the spe‐
cific type, rather than another type that might not fit or the general Exception class.

1.10 Constructing Objects with Complex Configuration
Problem
You need to build a new type with complex configuration options without an unnec‐
essary expansion of constructors.

Solution
Here’s the DeploymentService class we want to build:

public class DeploymentService
{
 public int StartDelay { get; set; } = 2000;
 public int ErrorRetries { get; set; } = 5;
 public string ReportFormat { get; set; } = "pdf";

 public void Start()
 {
 Console.WriteLine(
 $"Deployment started with:\n" +
 $" Start Delay: {StartDelay}\n" +
 $" Error Retries: {ErrorRetries}\n" +
 $" Report Format: {ReportFormat}");
 }
}

1.10 Constructing Objects with Complex Configuration | 33

This is the class that builds the DeploymentService instance:

public class DeploymentBuilder
{
 DeploymentService service = new DeploymentService();

 public DeploymentBuilder SetStartDelay(int delay)
 {
 service.StartDelay = delay;
 return this;
 }

 public DeploymentBuilder SetErrorRetries(int retries)
 {
 service.ErrorRetries = retries;
 return this;
 }

 public DeploymentBuilder SetReportFormat(string format)
 {
 service.ReportFormat = format;
 return this;
 }

 public DeploymentService Build()
 {
 return service;
 }
}

Here’s how to use the DeploymentBuilder class:

class Program
{
 static void Main()
 {
 DeploymentService service =
 new DeploymentBuilder()
 .SetStartDelay(3000)
 .SetErrorRetries(3)
 .SetReportFormat("html")
 .Build();

 service.Start();
 }
}

34 | Chapter 1: Constructing Types and Apps

Discussion
In Recipe 1.9, the DeploymentValidationException class has multiple constructors.
Normally, this isn’t a problem. The first three constructors are a typical convention
for exception classes. Subsequent constructors add new parameters for initializing
new fields.

However, what if the class you were designing had a lot of options and there was a
strong possibility that new features would require new options? Further, developers
will want to pick and choose what options to configure the class with. Imagine the
exponential explosion of new constructors for every new option added to the class. In
such a scenario, constructors are practically useless. The builder pattern can solve this
problem.

An example of an object that implements the builder pattern is the ASP.NET Config
Settings. Another is the ServiceCollection from Recipe 1.2—the code isn’t entirely
written in a fluid manner, but it could be because it follows the builder pattern.

The Solution has a DeploymentService class, which is what we want to build. Its
properties have default values in case a developer doesn’t configure a given value. In
general terms, the class that the builder creates will also have other methods and
members for its intended purpose.

The DeploymentBuilder class implements the builder pattern. Notice that all of the
methods, except for Build, return the same instance (this) of the same type, Deploy
mentBuilder. They also use the parameter to configure the DeploymentService field
that was instantiated with the DeploymentBuilder instance. The Build method
returns the DeploymentService instance.

How the configuration and instantiation occur are implementation details of the
DeploymentBuilder that you can vary as needed. You can also accept any parameter
type you need and perform the configuration. Also, you can collect configuration
data and only instantiate the target class when the Build method runs. Another
advantage is that the order in which parameters are set is irrelevant. You have all the
flexibility to design the internals of the builder for what makes sense to you.

Finally, notice how the Main method instantiates DeploymentBuilder, uses its fluent
interface for configuration, and calls Build to return the DeploymentService
instance. This example used every method, but that wasn’t required because you have
the option to use some, none, or all.

See Also
Recipe 1.2, “Removing Explicit Dependencies”

Recipe 1.9, “Designing a Custom Exception”

1.10 Constructing Objects with Complex Configuration | 35

CHAPTER 2

Coding Algorithms

We code every day, thinking about the problem we’re solving and ensuring that our
algorithms work correctly. This is how it should be, and modern tools and software
development kits increasingly free our time to do just that. Even so, there are features
of C#, .NET, and coding in general that have significant effects on efficiency, perfor‐
mance, and maintainability.

Performance
A few subjects in this chapter discuss application performance, such as the efficient
handling of strings, caching data, or delaying the instantiation of a type until you
need it. In some simple scenarios, these things might not matter. However, in com‐
plex enterprise apps that need the performance and scale, keeping an eye on these
techniques can help avoid expensive problems in production.

Maintainability
How you organize code can significantly affect its maintainability. Building on the
discussions in Chapter 1, you’ll see a new pattern and strategy and understand how
they can help simplify an algorithm and make an app more extensible. Another sec‐
tion discusses using recursion for naturally occurring hierarchical data. Collecting
these techniques and thinking about the best way to approach an algorithm can make
a significant difference in the maintainability and quality of code.

37

Mindset
A couple of sections of this chapter might be interesting in specific contexts, illustrat‐
ing different ways to think about solving problems. You might not use regular expres‐
sions every day, but they’re very useful when you need them. Another section, on
converting to/from Unix time, looks into the future of .NET as a cross-platform lan‐
guage, knowing that we need a certain mindset to think about designing algorithms
in an environment we might not have ever considered in the past.

2.1 Processing Strings Efficiently
Problem
A profiler indicates a problem in part of your code that builds a large string iteratively
and you need to improve performance.

Solution
Here’s an InvoiceItem class we’ll be working with:

public class InvoiceItem
{
 public decimal Cost { get; set; }
 public string Description { get; set; }
}

This method produces sample data for the demo:

static List<InvoiceItem> GetInvoiceItems()
{
 var items = new List<InvoiceItem>();
 var rand = new Random();
 for (int i = 0; i < 100; i++)
 items.Add(
 new InvoiceItem
 {
 Cost = rand.Next(i),
 Description = "Invoice Item #" + (i+1)
 });

 return items;
}

There are two methods for working with strings. First, the inefficient method:

static string DoStringConcatenation(List<InvoiceItem> lineItems)
{
 string report = "";

 foreach (var item in lineItems)

38 | Chapter 2: Coding Algorithms

 report += $"{item.Cost:C} - {item.Description}\n";

 return report;
}

Next is the more efficient method:

static string DoStringBuilderConcatenation(List<InvoiceItem> lineItems)
{
 var reportBuilder = new StringBuilder();

 foreach (var item in lineItems)
 reportBuilder.Append($"{item.Cost:C} - {item.Description}\n");

 return reportBuilder.ToString();
}

The Main method ties all of this together:

static void Main(string[] args)
{
 List<InvoiceItem> lineItems = GetInvoiceItems();

 DoStringConcatenation(lineItems);

 DoStringBuilderConcatenation(lineItems);
}

Discussion
There are different reasons why we need to gather data into a longer string. Reports,
whether text based or formatted via HTML or other markup, require combining text
strings. Sometimes we add items to an email or manually build PDF content as an
email attachment. Other times we might need to export data in a nonstandard format
for legacy systems. Too often, developers use string concatenation when String
Builder is the superior choice.

String concatenation is intuitive and quick to code, which is why so many people do
it. However, concatenating strings can also kill application performance. The problem
occurs because each concatenation performs expensive memory allocations. Let’s
examine both the wrong way to build strings and the right way.

The logic in the DoStringConcatenation method extracts Cost and Description
from each InvoiceItem and concatenates that to a growing string. Concatenating just
a few strings might go unnoticed. However, imagine if this was 25, 50, or 100 lines or
more. Using an example similar to this recipe’s solution, Recipe 3.10 shows how
string concatenation is an exponentially time-intensive operation that destroys appli‐
cation performance.

2.1 Processing Strings Efficiently | 39

When concatenating within the same expression, e.g., string1 +
string2, the C# compiler can optimize the code. It’s the loop with
concatenation that causes the huge performance hit.

The DoStringBuilderConcatenation method fixes this problem. It uses the String
Builder class, which is in the System.Text namespace. It uses the builder pattern,
described in Recipe 1.10, where each AppendText adds the new string to the String
Builder instance, reportsBuilder. Before returning, the method calls ToString to
convert the StringBuilder contents to a string.

As a rule of thumb, once you’ve gone past four string concatena‐
tions, you’ll receive better performance by using StringBuilder.

Fortunately, the .NET ecosystem has many .NET Framework libraries and third-party
libraries that help with forming strings of common format. You should use one of
these libraries whenever possible because they’re often optimized for performance
and will save time and make the code easier to read. To give you an idea, Table 2-1
shows a few libraries to consider for common formats.

Table 2-1. Data formats and libraries
Data format Library
JSON.NET 5 System.Text.Json

JSON ⇐ .NET 4.x Json.NET

XML LINQ to XML

CSV LINQ to CSV

HTML System.Web.UI.HtmlTextWriter

PDF Various commercial and open source providers

Excel Various commercial and open source providers

One more thought: custom search and filtering panels are common for giving users a
simple way to query corporate data. Too frequently, developers use string concatena‐
tion to build Structured Query Language (SQL) queries. While string concatenation
is easier, beyond performance, the problem with that is security. String-concatenated
SQL statements open the opportunity for SQL injection attack. In this case, String
Builder isn’t a solution. Instead, you should use a data library that parameterizes user
input to circumvent SQL injection. There’s ADO.NET, LINQ providers, and other
third-party data libraries that do input value parameterization for you. For dynamic

40 | Chapter 2: Coding Algorithms

queries, using a data library might be harder, but it is possible. You might want to
seriously consider using LINQ, which I discuss in Chapter 4.

See Also
Recipe 1.10, “Constructing Objects with Complex Configuration”

Recipe 3.10, “Measuring Performance”

Chapter 4, “Querying with LINQ”

2.2 Simplifying Instance Cleanup
Problem
Old using statements cause unnecessary nesting and you want to clean up and sim‐
plify code.

Solution
This program has using statements for reading and writing to a text file:

class Program
{
 const string FileName = "Invoice.txt";

 static void Main(string[] args)
 {
 Console.WriteLine(
 "Invoice App\n" +
 "-----------\n");

 WriteDetails();

 ReadDetails();
 }

 static void WriteDetails()
 {
 using var writer = new StreamWriter(FileName);

 Console.WriteLine("Type details and press [Enter] to end.\n");

 string detail;
 do
 {
 Console.Write("Detail: ");
 detail = Console.ReadLine();
 writer.WriteLine(detail);
 }

2.2 Simplifying Instance Cleanup | 41

 while (!string.IsNullOrWhiteSpace(detail));
 }

 static void ReadDetails()
 {
 Console.WriteLine("\nInvoice Details:\n");

 using var reader = new StreamReader(FileName);

 string detail;
 do
 {
 detail = reader.ReadLine();
 Console.WriteLine(detail);
 }
 while (!string.IsNullOrWhiteSpace(detail));
 }
}

Discussion
Before C# 8, using statement syntax required parentheses for IDisposable object
instantiation and an enclosing block. During runtime, when the program reached the
closing block, it would call Dispose on the instantiated object. If you needed multiple
using statements to operate at the same time, developers would often nest them,
resulting in extra space in addition to normal statement nesting. This pattern was
enough of an annoyance to some developers that Microsoft added a feature to the
language to simplify using statements.

In the solution, you can see a couple of places where the new using statement syntax
occurs: instantiating the StreamWriter in WriteDetails and instantiating the Stream
Reader in ReadDetails. In both cases, the using statement is on a single line. Gone
are the parentheses and curly braces, and each statement terminates with a
semicolon.

The scope of the new using statement is its enclosing block, calling the using object’s
Dispose method when execution reaches the end of the enclosing block. In the solu‐
tion, the enclosing block is the method, which causes each using object’s Dispose
method to be called at the end of the method.

What’s different about the single-line using statement is that it will work with both
IDisposable objects and objects that implement a disposable pattern. In this context,
a disposable pattern means that the object doesn’t implement IDisposable, yet it has
a parameterless Dispose method.

42 | Chapter 2: Coding Algorithms

See Also
Recipe 1.1, “Managing Object End-of-Lifetime”

2.3 Keeping Logic Local
Problem
An algorithm has complex logic that is better refactored to another method, but the
logic is really only used in one place.

Solution
The program uses the CustomerType and InvoiceItem:

public enum CustomerType
{
 None,
 Bronze,
 Silver,
 Gold
}

public class InvoiceItem
{
 public decimal Cost { get; set; }
 public string Description { get; set; }
}

This method generates and returns a demo set of invoices:

static List<InvoiceItem> GetInvoiceItems()
{
 var items = new List<InvoiceItem>();
 var rand = new Random();
 for (int i = 0; i < 100; i++)
 items.Add(
 new InvoiceItem
 {
 Cost = rand.Next(i),
 Description = "Invoice Item #" + (i + 1)
 });

 return items;
}

Finally, the Main method shows how to use a local function:

static void Main()
{
 List<InvoiceItem> lineItems = GetInvoiceItems();

2.3 Keeping Logic Local | 43

 decimal total = 0;

 foreach (var item in lineItems)
 total += item.Cost;

 total = ApplyDiscount(total, CustomerType.Gold);

 Console.WriteLine($"Total Invoice Balance: {total:C}");

 decimal ApplyDiscount(decimal total, CustomerType customerType)
 {
 switch (customerType)
 {
 case CustomerType.Bronze:
 return total - total * .10m;
 case CustomerType.Silver:
 return total - total * .05m;
 case CustomerType.Gold:
 return total - total * .02m;
 case CustomerType.None:
 default:
 return total;
 }
 }
}

Discussion
Local methods are useful whenever code is only relevant to a single method and you
want to isolate that code. Reasons for isolating code are to give meaning to a set of
complex logic, reuse logic and simplify calling code (perhaps a loop), or allow an
async method to throw an exception before awaiting the enclosing method.

The Main method in the solution has a local method, named ApplyDiscount. This
example demonstrates how a local method can simplify code. If you examine the
code in ApplyDiscount, it might not be immediately clear what its purpose is. How‐
ever, by separating that logic into its own method, anyone can read the method name
and know what the purpose of the logic is. This is a great way to make code more
maintainable, by expressing intent and making that logic local where another devel‐
oper won’t need to hunt for a class method that might move around after future
maintenance.

44 | Chapter 2: Coding Algorithms

2.4 Operating on Multiple Classes the Same Way
Problem
An application must be extensible, for adding new plug-in capabilities, but you don’t
want to rewrite existing code for new classes.

Solution
This is a common interface for several classes to implement:

public interface IInvoice
{
 bool IsApproved();

 void PopulateLineItems();

 void CalculateBalance();

 void SetDueDate();
}

Here are a few classes that implement IInvoice:

public class BankInvoice : IInvoice
{
 public void CalculateBalance()
 {
 Console.WriteLine("Calculating balance for BankInvoice.");
 }

 public bool IsApproved()
 {
 Console.WriteLine("Checking approval for BankInvoice.");
 return true;
 }

 public void PopulateLineItems()
 {
 Console.WriteLine("Populating items for BankInvoice.");
 }

 public void SetDueDate()
 {
 Console.WriteLine("Setting due date for BankInvoice.");
 }
}

public class EnterpriseInvoice : IInvoice
{
 public void CalculateBalance()

2.4 Operating on Multiple Classes the Same Way | 45

 {
 Console.WriteLine("Calculating balance for EnterpriseInvoice.");
 }

 public bool IsApproved()
 {
 Console.WriteLine("Checking approval for EnterpriseInvoice.");
 return true;
 }

 public void PopulateLineItems()
 {
 Console.WriteLine("Populating items for EnterpriseInvoice.");
 }

 public void SetDueDate()
 {
 Console.WriteLine("Setting due date for EnterpriseInvoice.");
 }
}

public class GovernmentInvoice : IInvoice
{
 public void CalculateBalance()
 {
 Console.WriteLine("Calculating balance for GovernmentInvoice.");
 }

 public bool IsApproved()
 {
 Console.WriteLine("Checking approval for GovernmentInvoice.");
 return true;
 }

 public void PopulateLineItems()
 {
 Console.WriteLine("Populating items for GovernmentInvoice.");
 }

 public void SetDueDate()
 {
 Console.WriteLine("Setting due date for GovernmentInvoice.");
 }
}

This method populates a collection with objects that implement IInvoice:

static IEnumerable<IInvoice> GetInvoices()
{
 return new List<IInvoice>
 {
 new BankInvoice(),
 new EnterpriseInvoice(),

46 | Chapter 2: Coding Algorithms

 new GovernmentInvoice()
 };
}

The Main method has an algorithm that operates on the IInvoice interface:

static void Main(string[] args)
{
 IEnumerable<IInvoice> invoices = GetInvoices();

 foreach (var invoice in invoices)
 {
 if (invoice.IsApproved())
 {
 invoice.CalculateBalance();
 invoice.PopulateLineItems();
 invoice.SetDueDate();
 }
 }
}

Discussion
As a developer’s career progresses, chances are they’ll encounter requirements that
customers want an application to be “extensible.” Although the exact meaning is
imprecise to even the most seasoned architects, there’s a general understanding that
“extensibility” should be a theme in the application’s design. We generally move in
this direction by identifying areas of the application that can and will change over
time. Patterns can help with this, such as the factory classes of Recipe 1.3, factory
methods of Recipe 1.4, and builders in Recipe 1.10. In a similar light, the strategy pat‐
tern described in this section helps organize code for extensibility.

The strategy pattern is useful when there are multiple object types to work with at the
same time and you want them to be interchangeable and write code one time that
operates on each object the same way. In object-oriented terms, this is interface poly‐
morphism. The software we use every day are classic examples of where a strategy
could work. Office applications have different document types and allow developers
to write their own add-ins. Browsers have add-ins that developers can write. The edi‐
tors and integrated development environments (IDEs) you use every day have plug-in
capabilities.

The solution describes an application that operates on different types of invoices in
the domains of banking, enterprise, and government. Each of these domains has its
own business rules related to legal or other requirements. What makes this extensible
is the fact that, in the future, we can add another class to handle invoices in another
domain.

2.4 Operating on Multiple Classes the Same Way | 47

The glue to making this work is the IInvoice interface. It contains the required
methods (or contract) that each implementing class must define. You can see that
the BankInvoice, EnterpriseInvoice, and GovernmentInvoices each implement
IInvoice.

GetInvoices simulates the situation where you would write code to populate invoices
from a data source. Whenever you need to extend the framework, by adding a new
IInvoice derived type, this is the only code that changes. Because all classes are
IInvoice, they can all be returned via the same IEnumerable<IInvoice> collection.

Even though the GetInvoices implementation operated on
List<IInvoice>, it returned an IEnumerable<IInvoice> from
GetInvoices. By returning an interface here, IEnumerable<T>, call‐
ers don’t make any assumptions about the underlying collection
implementation. That way, a future version of GetInvoices could
potentially work with another collection type that implemented
IEnumerable<T> if that other collection type was better for the new
implementation. The benefit is that the code can change without
changing the method signature and not break calling code.

Finally, examine the Main method. It iterates on each IInvoice object, calling its
methods. Main doesn’t care what the specific implementation is, and so its code never
needs to change to accommodate instance-specific logic. You don’t need if or switch
statements for special cases, which blow up into spaghetti code in maintenance. Any
future changes will be on how Main works with the IInvoice interface. Any changes
to business logic associated with invoices is limited to the invoice types themselves.
This is easy to maintain, and it’s easy to figure out where logic is and should be. Fur‐
ther, it’s also easy to extend by adding a new plug-in class that implements IInvoice.

See Also
Recipe 1.3, “Delegating Object Creation to a Class”

Recipe 1.4, “Delegating Object Creation to a Method”

Recipe 1.10, “Constructing Objects with Complex Configuration”

2.5 Checking for Type Equality
Problem
You need to search for objects in a collection, and default equality won’t work.

48 | Chapter 2: Coding Algorithms

Solution
The Invoice class implements IEquatable<T>:

public class Invoice : IEquatable<Invoice>
{
 public int CustomerID { get; set; }

 public DateTime Created { get; set; }

 public List<string> InvoiceItems { get; set; }

 public decimal Total { get; set; }

 public bool Equals(Invoice other)
 {
 if (ReferenceEquals(other, null))
 return false;

 if (ReferenceEquals(this, other))
 return true;

 if (GetType() != other.GetType())
 return false;

 return
 CustomerID == other.CustomerID &&
 Created.Date == other.Created.Date;
 }

 public override bool Equals(object other)
 {
 return Equals(other as Invoice);
 }

 public override int GetHashCode()
 {
 return (CustomerID + Created.Ticks).GetHashCode();
 }

 public static bool operator ==(Invoice left, Invoice right)
 {
 if (ReferenceEquals(left, null))
 return ReferenceEquals(right, null);

 return left.Equals(right);
 }

 public static bool operator !=(Invoice left, Invoice right)
 {
 return !(left == right);

2.5 Checking for Type Equality | 49

 }
}

This code returns a collection of Invoice classes:

static List<Invoice> GetAllInvoices()
{
 DateTime date = DateTime.Now;

 return new List<Invoice>
 {
 new Invoice { CustomerID = 1, Created = date },
 new Invoice { CustomerID = 2, Created = date },
 new Invoice { CustomerID = 1, Created = date },
 new Invoice { CustomerID = 3, Created = date }
 };
}

Here’s how to use the Invoice class:

static void Main(string[] args)
{
 List<Invoice> allInvoices = GetAllInvoices();

 Console.WriteLine($"# of All Invoices: {allInvoices.Count}");

 var invoicesToProcess = new List<Invoice>();

 foreach (var invoice in allInvoices)
 {
 if (!invoicesToProcess.Contains(invoice))
 invoicesToProcess.Add(invoice);
 }

 Console.WriteLine($"# of Invoices to Process: {invoicesToProcess.Count}");
}

Discussion
The default equality semantics for reference types is reference equality and for value
types is value equality. Reference equality means that when comparing objects, these
objects are equal when their references refer to the same exact object instance. Value
equality occurs when each member of an object is compared before two objects are
considered equal. The problem with reference equality is that sometimes you have
two instances of the same class, but you really want to compare their corresponding
members to see if they are equal. Value equality might also pose a problem because
you might only want to check part of the object to see if they’re equal.

To solve the problem of inadequate default equality, the solution implements custom
equality on Invoice. The Invoice class implements the IEquatable<T> interface,
where T is Invoice. Although IEquatable<T> requires an Equals(T other) method,

50 | Chapter 2: Coding Algorithms

you should also implement Equals(object other), GetHashCode(), and the ==
and != operators, resulting in a consistent definition of equality for all scenarios.

There’s a lot of science in picking a good hash code, which is out of scope for this
book, so the solution implementation is minimal.

C# 9.0 Records give you IEquatable<T> logic by default. However,
Records give you value equality, and you would want to implement
IEquatable<T> yourself if you needed to be more specific. For
instance, if your object has free-form text fields that don’t contrib‐
ute to the identity of the object, why waste resources doing the
unnecessary field comparisons? Another problem (maybe more
rare) could be that some parts of a record might be different for
temporal reasons, e.g., temporary timestamps, status, or globally
unique identifiers (GUIDs) that will cause the objects to never be
equal during processing.

The equality implementation avoids repeating code. The != operator invokes (and
negates) the == operator. The == operator checks references and returns true if both
references are null and false if only one reference is null. Both the == operator and
the Equals(object other) method call the Equals(Invoice other) method.

The current instance is clearly not null, so Equals(Invoice other) only checks the
other reference and returns false if it’s null. Then it checks to see if this and other
have reference equality, which would obviously mean they are equal. Then, if the
objects aren’t the same type, they are not considered equal. Finally, return the results
of the values to compare. In this example, the only things that make sense are the
CustomerID and Date.

One part of the Equals(Invoice other) method that you might
change is the type check. You could have a different opinion, based
on the requirements of your application. e.g., what if you wanted to
check equality even if other was a derived type? Then change the
logic to accept derived types also.

The Main method processes invoices, ensuring we don’t add duplicate invoices to a
list. The loop calls the collection Contains method, which checks the object’s equality.
If there isn’t a matching object, Contains adds the new Invoice instance to the
invoicesToProcess list. When running the program, there are four invoices that
exist in allInvoices, but only three are added to invoicesToProcess because there’s
one duplicate (based on CustomerID and Created) in allInvoices.

2.5 Checking for Type Equality | 51

2.6 Processing Data Hierarchies
Problem
An app needs to work with hierarchical data, and an iterative approach is too com‐
plex and unnatural.

Solution
This is the format of data we’re starting with:

public class BillingCategory
{
 public int ID { get; set; }
 public string Name { get; set; }
 public int? Parent { get; set; }
}

This method returns a collection of hierarchically related records:

static List<BillingCategory> GetBillingCategories()
{
 return new List<BillingCategory>
 {
 new BillingCategory { ID = 1, Name = "First 1", Parent = null },
 new BillingCategory { ID = 2, Name = "First 2", Parent = null },
 new BillingCategory { ID = 4, Name = "Second 1", Parent = 1 },
 new BillingCategory { ID = 3, Name = "First 3", Parent = null },
 new BillingCategory { ID = 5, Name = "Second 2", Parent = 2 },
 new BillingCategory { ID = 6, Name = "Second 3", Parent = 3 },
 new BillingCategory { ID = 8, Name = "Third 1", Parent = 5 },
 new BillingCategory { ID = 8, Name = "Third 2", Parent = 6 },
 new BillingCategory { ID = 7, Name = "Second 4", Parent = 3 },
 new BillingCategory { ID = 9, Name = "Second 5", Parent = 1 },
 new BillingCategory { ID = 8, Name = "Third 3", Parent = 9 }
 };
}

This is a recursive algorithm that transforms the flat data into a hierarchical form:

static List<BillingCategory> BuildHierarchy(
 List<BillingCategory> categories, int? catID, int level)
{
 var found = new List<BillingCategory>();

 foreach (var cat in categories)
 {
 if (cat.Parent == catID)
 {
 cat.Name = new string('\t', level) + cat.Name;
 found.Add(cat);
 List<BillingCategory> subCategories =

52 | Chapter 2: Coding Algorithms

 BuildHierarchy(categories, cat.ID, level + 1);
 found.AddRange(subCategories);
 }
 }

 return found;
}

The Main method runs the program and prints out the hierarchical data:

static void Main(string[] args)
{
 List<BillingCategory> categories = GetBillingCategories();

 List<BillingCategory> hierarchy =
 BuildHierarchy(categories, catID: null, level: 0);

 PrintHierarchy(hierarchy);
}

static void PrintHierarchy(List<BillingCategory> hierarchy)
{
 foreach (var cat in hierarchy)
 Console.WriteLine(cat.Name);
}

Discussion
It’s hard to tell how many times you have or will encounter iterative algorithms with
complex logic and conditions on how the loop operates. Loops like for, foreach, and
while are familiar and often used, even when more elegant solutions are available.
I’m not suggesting there’s anything wrong with loops, which are integral parts of our
language toolset. However, it’s useful to expand our minds to other techniques that
might lend themselves to more elegant and maintainable code for given situations.
Sometimes a declarative approach, like a lambda on a collection’s ForEach operator, is
simple and clear. LINQ is a nice solution for working with object collections in mem‐
ory, which is the subject of Chapter 4. Another alternative is recursion—the subject of
this section.

The main point I’m making here is that we need to write algorithms using the techni‐
ques that are most natural for a given situation. A lot of algorithms do use loops natu‐
rally, like iterating through a collection. Other tasks beckon for recursion. A class of
algorithms that work on hierarchies might be excellent candidates for recursion.

The solution demonstrates one of the areas where recursion simplifies processing and
makes the code clear. It processes a list of categories based on billing. Notice that the
BillingCategory class has both an ID and a Parent. These manage the hierarchy,
where the Parent identifies the parent category. Any BillingCategory with a null

2.6 Processing Data Hierarchies | 53

Parent is a top-level category. This is a single table relational database (DB) represen‐
tation of hierarchical data.

The GetBillingCategories represents how the BillingCategories arrive from a
DB. It’s a flat structure. Notice how the Parent properties reference their parent
BillingCategory IDs. Another important fact about the data is that there isn’t a clean
ordering between parents and children. In a real application, you’ll start off with a
given set of categories and add new categories later. Again, maintenance in code and
data over time changes how we approach algorithm design, and this would compli‐
cate an iterative solution.

The purpose of this solution is to take the flat category representation and transform
it into another list that represents the hierarchical relationship between categories.
This was a simple solution, but you might imagine an object-based representation
where parent categories contained a collection with child categories. The recursive
algorithm that does this is the BuildHierarchy method.

The BuildHierarchy method accepts three parameters: categories, catID, and
level. The categories parameter is the flat collection from the DB and every recur‐
sive call receives a reference to this same collection. A potential optimization might
be to remove categories that have already been processed, though the demo avoids
anything distracting from presented concepts. The catID parameter is the ID for the
current BillingCategory, and the code is searching for all subcategories whose
Parent matches catID—as demonstrated by the if statement inside the foreach
loop. The level parameter helps manage the visual representation of each category.
The first statement inside the if block uses level to determine how many tabs (\t)
to prefix to the category name. Every time we make a recursive call to BuildHierar
chy, we increment level so that subcategories are indented more than their parents.

The algorithm calls BuildHierarchy with the same categories collection. Also, it uses
the ID of the current category, not the catID parameter. This means that it recursively
calls BuildHierarchy until it reaches the bottom-most categories. It will know it’s at
the bottom of the hierarchy because the foreach loop completes with no new cate‐
gories, because there aren’t any subcategories for the current (bottom) category.

After reaching the bottom, BuildHierarchy returns and continues the foreach loop,
collecting all of the categories under the catID—that is, their Parent is catID. Then it
appends any matching subcategories to the found collection to the calling BuildHier
archy. This continues until the algorithm reaches the top level and all root categories
are processed.

54 | Chapter 2: Coding Algorithms

The recursive algorithm in this solution is referred to as depth-first
search (DFS).

Having arrived at the top level, BuildHierarchy returns the entire collection to its
original caller, which is Main. Main originally called BuildHierarchy with the entire
flat categories collection. It set catID to null, indicating that BuildHierarchy
should start at the root level. The level argument is 0, indicating that we don’t want
any tab prefixes on root-level category names. Here’s the output:

First 1
 Second 1
 Second 5
 Third 3
First 2
 Second 2
 Third 1
First 3
 Second 3
 Third 2
 Second 4

Looking back at the GetBillingCategories method, you can see how the visual rep‐
resentation matches the data.

2.7 Converting from/to Unix Time
Problem
A service is sending date information in seconds or ticks since the Linux epoch needs
to be converted to a C#/.NET DateTime.

Solution
Here are some values we’ll be using:

static readonly DateTime LinuxEpoch =
 new DateTime(1970, 1, 1, 0, 0, 0, 0);
static readonly DateTime WindowsEpoch =
 new DateTime(0001, 1, 1, 0, 0, 0, 0);
static readonly double EpochMillisecondDifference =
 new TimeSpan(
 LinuxEpoch.Ticks - WindowsEpoch.Ticks).TotalMilliseconds;

These methods convert from and to Linux epoch timestamps:

public static string ToLinuxTimestampFromDateTime(DateTime date)
{

2.7 Converting from/to Unix Time | 55

 double dotnetMilliseconds = TimeSpan.FromTicks(date.Ticks).TotalMilliseconds;

 double linuxMilliseconds = dotnetMilliseconds - EpochMillisecondDifference;

 double timestamp = Math.Round(
 linuxMilliseconds, 0, MidpointRounding.AwayFromZero);

 return timestamp.ToString();
}

public static DateTime ToDateTimeFromLinuxTimestamp(string timestamp)
{
 ulong.TryParse(timestamp, out ulong epochMilliseconds);
 return LinuxEpoch + +TimeSpan.FromMilliseconds(epochMilliseconds);
}

The Main method demonstrates how to use those methods:

static void Main()
{
 Console.WriteLine(
 $"WindowsEpoch == DateTime.MinValue: " +
 $"{WindowsEpoch == DateTime.MinValue}");

 DateTime testDate = new DateTime(2021, 01, 01);

 Console.WriteLine($"testDate: {testDate}");

 string linuxTimestamp = ToLinuxTimestampFromDateTime(testDate);

 TimeSpan dotnetTimeSpan =
 TimeSpan.FromMilliseconds(long.Parse(linuxTimestamp));
 DateTime problemDate =
 new DateTime(dotnetTimeSpan.Ticks);

 Console.WriteLine(
 $"Accidentally based on .NET Epoch: {problemDate}");

 DateTime goodDate = ToDateTimeFromLinuxTimestamp(linuxTimestamp);

 Console.WriteLine(
 $"Properly based on Linux Epoch: {goodDate}");
}

Discussion
Sometimes developers represent date/time data as milliseconds or ticks in a database.
Ticks are measured as 100 nanoseconds. Both milliseconds and ticks represent time
starting at a predefined epoch, which is some point in time that is the minimum date
for a computing platform. For .NET, the epoch is 01/01/0001 00:00:00, corresponding
to the WindowsEpoch field in the solution. This is the same as DateTime.MinValue,

56 | Chapter 2: Coding Algorithms

but defining it this way makes the example more explicit. For MacOS, the epoch is 1
January 1904, and for Linux, the epoch is 1 January 1970, as shown by the Linux
Epoch field in the solution.

There are various opinions on whether representing DateTime val‐
ues as milliseconds or ticks is a proper design. However, I leave that
debate to other people and venues. My habit is to use the DateTime
format of the database I’m using. I also translate the DateTime to
UTC because many apps need to exist beyond the local time zone
and you need consistent translatable representation.

Increasingly, developers are more likely to encounter situations where they need to
build cross-platform solutions or integrate with a third-party system with milli‐
seconds or ticks based on a different epoch. For instance, the Twitter API began using
milliseconds based on the Linux epoch in their 2020 version 2.0 release. The solution
example is inspired by code that works with milliseconds from Twitter API respon‐
ses. The release of .NET Core gave us cross-platform capabilities for C# developers
for console and ASP.NET MVC Core applications. .NET 5 continues the cross-
platform story and the roadmap for .NET 6 includes the first rich GUI interface,
codenamed Maui. If you’ve been accustomed to working solely in the Microsoft
and .NET platforms, this should indicate that things continue to change along the
type of thinking required for future development.

The ToLinuxTimestampFromDateTime takes a .NET DateTime and converts it to a
Linux timestamp. The Linux timestamp is the number of milliseconds from the Linux
epoch. Since we’re working in milliseconds, the TimeSpan converts the DateTime ticks
to milliseconds. To perform the conversion, we subtract the number of milliseconds
between the .NET time and the equivalent Linux time, which we precalculated in
EpochMillisecondDifference by subtracting the .NET (Windows) epoch from the
Linux epoch. After the conversion, we need to round the value to eliminate excess
precision. The default to Math.Round uses what’s called Bankers’ Rounding, which is
often not what we need, so the overload with MidpointRounding.AwayFromZero does
the rounding we expect. The solution returns the final value as a string, and you can
change that for what makes sense for your implementation.

The ToDateTimeFromLinuxTimestamp method is remarkably simpler. After convert‐
ing to a ulong, it creates a new timestamp from the milliseconds and adds that to the
LinuxEpoch. Here’s the output from the Main method:

WindowsEpoch == DateTime.MinValue: True
testDate: 1/1/2021 12:00:00 AM
Accidentally based on .NET Epoch: 1/2/0052 12:00:00 AM
Properly based on Linux Epoch: 1/1/2021 12:00:00 AM

2.7 Converting from/to Unix Time | 57

As you can see, DateTime.MinValue is the same as the Windows epoch. Using
1/1/2021 as a good date (at least we hope so), Main starts by properly converting that
date to a Linux timestamp. Then it shows the wrong way to process that date. Finally,
it calls ToDateTimeFromLinuxTimestamp, performing the proper translation.

2.8 Caching Frequently Requested Data
Problem
Network latency is causing an app to run slowly because static, frequently used data is
being fetched too often.

Solution
Here’s the type of data that will be cached:

public class InvoiceCategory
{
 public int ID { get; set; }

 public string Name { get; set; }
}

This is the interface for the repository that retrieves the data:

public interface IInvoiceRepository
{
 List<InvoiceCategory> GetInvoiceCategories();
}

This is the repository that retrieves and caches the data:

public class InvoiceRepository : IInvoiceRepository
{
 static List<InvoiceCategory> invoiceCategories;

 public List<InvoiceCategory> GetInvoiceCategories()
 {
 if (invoiceCategories == null)
 invoiceCategories = GetInvoiceCategoriesFromDB();

 return invoiceCategories;
 }

 List<InvoiceCategory> GetInvoiceCategoriesFromDB()
 {
 return new List<InvoiceCategory>
 {
 new InvoiceCategory { ID = 1, Name = "Government" },
 new InvoiceCategory { ID = 2, Name = "Financial" },
 new InvoiceCategory { ID = 3, Name = "Enterprise" },

58 | Chapter 2: Coding Algorithms

 };
 }
}

Here’s the program that uses that repository:

class Program
{
 readonly IInvoiceRepository invoiceRep;

 public Program(IInvoiceRepository invoiceRep)
 {
 this.invoiceRep = invoiceRep;
 }

 void Run()
 List<InvoiceCategory> categories =
 invoiceRep.GetInvoiceCategories();

 foreach (var category in categories)
 Console.WriteLine(
 $"ID: {category.ID}, Name: {category.Name}");
 }

 static void Main()
 {
 new Program(new InvoiceRepository()).Run();
 }
}

Discussion
Depending on the technology you’re using, there could be plenty of options for cach‐
ing data through mechanisms like CDN, HTTP, and data source solutions. Each has a
place and purpose, and this section doesn’t try to cover all of those options. Rather, it
just has a quick and simple technique for caching data that could be helpful in many
scenarios.

You might have experienced a scenario where there’s a set of data used in a lot of dif‐
ferent places. The nature of the data is typically lookup lists or business rule data. In
the course of everyday work, we build queries that include this data either in direct
select queries or in the form of database table joins. We forget about it until someone
starts complaining about application performance. Analysis might reveal that there
are a lot of queries that request that same data over and over again. If it’s practical,
you can cache that data in memory to avoid network latency exacerbated by excessive
queries to the same set of data.

This isn’t a blanket solution because you have to think about whether it’s practical in
your situation. For example, it’s impractical to hold too much data in memory, which
will cause other scalability problems. Ideally, it’s a finite and relatively small set of

2.8 Caching Frequently Requested Data | 59

data, like invoice categories. That data shouldn’t change too often because if you need
real-time access to dynamic data, this won’t work. If the underlying data source
changes, the cache is likely to be holding the old stale data.

The solution shows an InvoiceCategory class that we’re going to cache. It’s for a
lookup list, just two values per object, a finite and relatively small set of values, and
something that doesn’t change much. You can imagine that every query for invoices
as well as admin or search screens with lookup lists would require this data. It might
speed up invoice queries by removing the extra join and returning less data over the
wire where you can join the cached data after the DB query.

The solution has an InventoryRepository that implements the IInvoiceRepository
interface. This wasn’t strictly necessary for this example, though it does support dem‐
onstrating another example of IoC, as discussed in Recipe 1.2.

The InvoiceRepository class has an invoiceCategories field for holding a collec‐
tion of InvoiceCategory. The GetInvoiceCategories method would normally make
a DB query and return the results. However, this example only does the DB query if
invoiceCategories is null, and caches the result in invoiceCategories. This way,
subsequent requests get the cached version and don’t require a DB query.

The invoiceCategories field is static because you only want a sin‐
gle cache. In stateless web scenarios, as in ASP.NET, the Internet
Information Services (IIS) process recycles unpredictably, and
developers are advised not to rely on static variables. This situation
is different because if the recycle clears out invoiceCategories,
leaving it null, the next query will repopulate it.

The Main method uses IoC to instantiate InvoiceRepository and performs a query
for the InvoiceCategory collection.

See Also
Recipe 1.2, “Removing Explicit Dependencies”

2.9 Delaying Type Instantiation
Problem
A class has heavy instantiation requirements, and you can save on resource usage by
delaying the instantiation to only when necessary.

60 | Chapter 2: Coding Algorithms

Solution
Here’s the data we’ll work with:

public class InvoiceCategory
{
 public int ID { get; set; }

 public string Name { get; set; }
}

This is the repository interface:

public interface IInvoiceRepository
{
 void AddInvoiceCategory(string category);
}

This is the repository that we delay instantiation of:

public class InvoiceRepository : IInvoiceRepository
{
 public InvoiceRepository()
 {
 Console.WriteLine("InvoiceRepository Instantiated.");
 }

 public void AddInvoiceCategory(string category)
 {
 Console.WriteLine($"for category: {category}");
 }
}

This program shows a few ways to perform lazy initialization of the repository:

class Program
{
 public static ServiceProvider Container;

 readonly Lazy<InvoiceRepository> InvoiceRep =
 new Lazy<InvoiceRepository>();

 readonly Lazy<IInvoiceRepository> InvoiceRepFactory =
 new Lazy<IInvoiceRepository>(CreateInvoiceRepositoryInstance);

 readonly Lazy<IInvoiceRepository> InvoiceRepIoC =
 new Lazy<IInvoiceRepository>(CreateInvoiceRepositoryFromIoC);

 static IInvoiceRepository CreateInvoiceRepositoryInstance()
 {
 return new InvoiceRepository();
 }

 static IInvoiceRepository CreateInvoiceRepositoryFromIoC()

2.9 Delaying Type Instantiation | 61

 {
 return Container.GetRequiredService<IInvoiceRepository>();
 }

 static void Main()
 {
 Container =
 new ServiceCollection()
 .AddTransient<IInvoiceRepository, InvoiceRepository>()
 .BuildServiceProvider();

 new Program().Run();
 }

 void Run()
 {
 IInvoiceRepository viaLazyDefault = InvoiceRep.Value;
 viaLazyDefault.AddInvoiceCategory("Via Lazy Default \n");

 IInvoiceRepository viaLazyFactory = InvoiceRepFactory.Value;
 viaLazyFactory.AddInvoiceCategory("Via Lazy Factory \n");

 IInvoiceRepository viaLazyIoC = InvoiceRepIoC.Value;
 viaLazyIoC.AddInvoiceCategory("Via Lazy IoC \n");
 }
}

Discussion
Sometimes you have objects with heavy startup overhead. They might need some ini‐
tial calculations or have to wait on data that takes a while to get because of network
latency or dependencies on poorly performing external systems. This can have seri‐
ous negative consequences, especially on application startup. Imagine an app that is
losing potential customers during trial because it starts too slow, or even enterprise
users whose work is impacted by wait times. Although you may or may not be able to
fix the root cause of the performance bottleneck, another option might be to delay
instantiation of that object until you need it. For example, what if you really don’t
need that object immediately and can show a start screen right away?

The solution demonstrates how to use Lazy<T> to delay object instantiation. The
object in question is the InvoiceRepository, and we’re assuming it has a problem in
its constructor logic that causes a delay in instantiation.

Program has three fields whose type is Lazy<InvoiceRepository>, showing three dif‐
ferent ways to instantiate. The first field, InvoiceRep, instantiates a Lazy<Invoice
Repository> with no parameters. It assumes that InvoiceRepository has a default
constructor (parameterless) and will be called to create a new instance when the code
accesses the Value property.

62 | Chapter 2: Coding Algorithms

The InvoiceRepFactory field instance references the CreateInvoiceRepository
Instance method. When code accesses this field, it calls the CreateInvoiceReposi
toryInstance to construct the object. Since it’s a method, you have a lot of flexibility
in building the object.

In addition to the other two options, the InvoiceRepIoC field shows how you can use
lazy instantiation with IoC. Notice that the Main method builds an IoC container, as
described in Recipe 1.2. The CreateInvoiceRepositoryFromIoC method uses that
IoC container to request an instance of InvoiceRepository.

Finally, the Run method shows how to access the fields through the Lazy<T>.Value
property.

See Also
Recipe 1.2, “Removing Explicit Dependencies”

2.10 Parsing Data Files
Problem
The application needs to extract data from a custom external format, and string type
operations lead to complex and less efficient code.

Solution
Here’s the data types we’ll be working with:

public class InvoiceItem
{
 public decimal Cost { get; set; }
 public string Description { get; set; }
}

public class Invoice
{
 public string Customer { get; set; }
 public DateTime Created { get; set; }
 public List<InvoiceItem> Items { get; set; }
}

This method returns the raw string data that we want to extract and convert to
invoices:

static string GetInvoiceTransferFile()
{
 return
 "Creator 1::8/05/20::Item 1\t35.05\t" +
 "Item 2\t25.18\tItem 3\t13.13::Customer 1::Note 1\n" +

2.10 Parsing Data Files | 63

 "Creator 2::8/10/20::Item 1\t45.05" +
 "::Customer 2::Note 2\n" +
 "Creator 1::8/15/20::Item 1\t55.05\t" +
 "Item 2\t65.18::Customer 3::Note 3\n";
}

These are utility methods for building and saving invoices:

static Invoice GetInvoice(
 string matchCustomer, ..., string matchItems)
{
 List<InvoiceItem> lineItems = GetLineItems(matchItems);

 DateTime.TryParse(matchCreated, out DateTime created);

 var invoice =
 new Invoice
 {
 Customer = matchCustomer,
 Created = created,
 Items = lineItems
 };
 return invoice;
}

static List<InvoiceItem> GetLineItems(string matchItems)
{
 var lineItems = new List<InvoiceItem>();

 string[] itemStrings = matchItems.Split('\t');

 for (int i = 0; i < itemStrings.Length; i += 2)
 {
 decimal.TryParse(itemStrings[i + 1], out decimal cost);
 lineItems.Add(
 new InvoiceItem
 {
 Description = itemStrings[i],
 Cost = cost
 });
 }

 return lineItems;
}

static void SaveInvoices(List<Invoice> invoices)
{
 Console.WriteLine($"{invoices.Count} invoices saved.");
}

This method uses regular expressions to extract values from raw string data:

static List<Invoice> ParseInvoices(string invoiceFile)
{

64 | Chapter 2: Coding Algorithms

 var invoices = new List<Invoice>();

 Regex invoiceRegEx = new Regex(
 @"^.+?::(?<created>.+?)::(?<items>.+?)::(?<customer>.+?)::.+");

 foreach (var invoiceString in invoiceFile.Split('\n'))
 {
 Match match = invoiceRegEx.Match(invoiceString);

 if (match.Success)
 {
 string matchCustomer = match.Groups["customer"].Value;
 string matchCreated = match.Groups["created"].Value;
 string matchItems = match.Groups["items"].Value;

 Invoice invoice =
 GetInvoice(matchCustomer, matchCreated, matchItems);
 invoices.Add(invoice);
 }
 }

 return invoices;
}

The Main method runs the demo:

static void Main(string[] args)
{
 string invoiceFile = GetInvoiceTransferFile();

 List<Invoice> invoices = ParseInvoices(invoiceFile);

 SaveInvoices(invoices);
}

Discussion
Sometimes, we’ll encounter textual data that doesn’t fit standard data formats. It
might come from existing document files, log files, or external and legacy systems.
Often, we need to ingest that data and process it for storage in a DB. This section
explains how to do that with regular expressions.

The solution shows the data format we want to generate is an Invoice with a collec‐
tion of InvoiceItem. The GetInvoiceTransferFile method shows the format of the
data. The demo suggests that the data might come from a legacy system that already
produced that format, and it’s easier to write C# code to ingest that than to add code
in that system for a better-supported format. The specific data we’re interested in
extracting are the created date, invoice items, and customer name. Notice that new‐
lines (\n) separate records, double colons (::) separate invoice fields, and tabs (\t)
separate invoice item fields.

2.10 Parsing Data Files | 65

The GetInvoice and GetLineItems methods construct the objects from extracted
data and serve to separate object construction from the regular expression extraction
logic.

The ParseInvoices method uses regular expressions to extract values from the input
string. The RegEx constructor parameter contains the regular expression string used
to extract values.

While an entire discussion of regular expressions is out of scope, here’s what this
string does:

• ^ says to start at the beginning of the string.
• .+?:: matches all characters, up to the next invoice field separator (::). That

said, it ignores the contents that were matched.
• (?<created>.+?)::, (?<items>.+?)::, and (?<customer>.+?):: are similar

to .+?):: but go a step further by extracting values into groups based on the
given name. For example, (?<created>.+?):: means that it will extract all
matched data and put the data in a group named “created.”

• .+ matches all remaining characters.

The foreach loop relies on the \n separator in the string to work with each invoice.
The Match method executes the regular expression match, extracting values. If the
match was successful, the code extracts values from groups, calls GetInvoice, and
adds the new invoice to the invoices collection.

You might have noticed that we’re using GetLineItems to extract data from the match
Items parameter, from the regular expression items field. We could have used a more
sophisticated regular expression to take care of that too. However, this was intentional
for contrast in demonstrating how regular expression processing is a more elegant
solution in this situation.

As an enhancement, you might log any situations where match.Suc
cess is false if you’re concerned about losing data and/or want to
know if there’s a bug in the regular expression or original data
formatting.

Finally, the application returns the new line items to the calling code, Main, so it can
save them.

66 | Chapter 2: Coding Algorithms

CHAPTER 3

Ensuring Quality

All the best practices, fancy algorithms, and patterns in the world mean nothing if the
code doesn’t work properly. We all want to build the best app possible and minimize
bugs. The themes of this chapter revolve around maintainability, error prevention,
and writing correct code.

When working on a team, other developers must work with the code you write. They
add new features and fix bugs. If you write code that’s easy to read, it will be more
maintainable—that is, other developers will be able to read and understand it. Even if
you’re the sole developer, coming back to code you’ve written in the past can be a new
experience. Increased maintainability leads to fewer new bugs being introduced and
quicker task turnaround. Fewer bugs mean fewer software life-cycle costs and more
time for other value-added features. It is this spirit of maintainability that motivates
the content in this chapter.

Similar to maintainability, error prevention is an important quality concept. Users
can and will use apps in a way that finds the one bug that we never thought would
happen. Recipes 3.1 and 3.4 give essential tools to help. Proper exception handling is
an important skill and you’ll learn that too.

Another feature of quality is to ensure the code is correct, and unit testing is an essen‐
tial practice. Although unit testing has been with us for a long time, it isn’t a solved
problem. A lot of developers still don’t write unit tests. However, it’s such an impor‐
tant topic that the first section in this chapter shows you how to write a unit test.

67

3.1 Writing a Unit Test
Problem
Quality-assurance professionals are continually finding problems during integration,
testing, and you want to reduce the number of bugs that are checked in.

Solution
Here’s the code to test:

public enum CustomerType
{
 Bronze,
 Silver,
 Gold
}

public class Order
{
 public decimal CalculateDiscount(
 CustomerType custType, decimal amount)
 {
 decimal discount;

 switch (custType)
 {
 case CustomerType.Silver:
 discount = amount * 1.05m;
 break;
 case CustomerType.Gold:
 discount = amount * 1.10m;
 break;
 case CustomerType.Bronze:
 default:
 discount = amount;
 break;
 }

 return discount;
 }
}

A separate test project has unit tests:

public class OrderTests
{
 [Fact]
 public void
 CalculateDiscount_WithBronzeCustomer_GivesNoDiscount()
 {

68 | Chapter 3: Ensuring Quality

 const decimal ExpectedDiscount = 5.00m;

 decimal actualDiscount =
 new Order().CalculateDiscount(CustomerType.Bronze, 5.00m);

 Assert.Equal(ExpectedDiscount, actualDiscount);
 }

 [Fact]
 public void
 CalculateDiscount_WithSilverCustomer_GivesFivePercentDiscount()
 {
 const decimal ExpectedDiscount = 5.25m;

 decimal actualDiscount =
 new Order().CalculateDiscount(CustomerType.Silver, 5.00m);

 Assert.Equal(ExpectedDiscount, actualDiscount);
 }

 [Fact]
 public void
 CalculateDiscount_WithGoldCustomer_GivesTenPercentDiscount()
 {
 const decimal ExpectedDiscount = 5.50m;

 decimal actualDiscount =
 new Order().CalculateDiscount(CustomerType.Gold, 5.00m);

 Assert.Equal(ExpectedDiscount, actualDiscount);
 }
}

Discussion
The code to test is the system under test (SUT), and the code that tests it is called a
unit test. Unit tests are typically in a separate project, referencing the SUT, avoiding
bloating the deliverable assembly by not shipping test code with production code.
The size of the unit to test is often a type like a class, record, or struct. The solution
has an Order class (SUT) with a CalculateDiscount method. The unit tests ensure
CalculateDiscount operates correctly.

There are several well-known unit test frameworks, and you can try a few and use the
one you like best. These examples use XUnit. Most of the unit test frameworks inte‐
grate with Visual Studio and other IDEs.

Unit test frameworks help identify unit test code with attributes. Some have an
attribute for the test class, but XUnit doesn’t. With XUnit, you only need to add a
[Fact] attribute to the unit test and it will work with the IDE or other tooling you’re

3.1 Writing a Unit Test | 69

using. The XUnit authors wanted to reduce excessive attribute usage and make it eas‐
ier for F# (and other .NET languages) to use the framework.

That unit testing frameworks use attributes to identify tests is inter‐
esting. They do this using a .NET feature called reflection. Recipe
5.1 shows how you can use reflection to work with attributes in
your code so you can build your own tools.

The naming convention of the unit tests indicates their purpose, making it easy to
read. The OrderTests class indicates that its unit tests operate on the Order class.
Unit test method names have the following pattern:

 <MethodToTest>_<Condition>_<ExpectedOutcome>

The first unit test, CalculateDiscount_WithBronzeCustomer_GivesNoDiscount, fol‐
lows this pattern where:

• CalculateDiscount is the method to test.
• WithBronzeCustomer specifies what is unique about the input for this particular

test.
• GivesNoDiscount is the result to verify.

The organization of the unit tests uses a format called Arrange, Act, and Assert
(AAA). The following discussion covers each of these parts of the test format.

The arrange section creates all the necessary types for the test to occur. In these unit
tests, the arrange creates a const ExpectedDiscount. In more complex scenarios, the
arrange part will instantiate input parameters that establish the appropriate condi‐
tions for the test. In this example, the conditions were so simple that they are written
as constant parameters in the act part.

The act part is a method call that takes parameters, if any, that create the conditions
to be tested. In these examples, the act part instantiates an Order instance and calls
CalculateDiscount with the appropriate parameter values, assigning the response to
actualDiscount.

The Assert class belongs to the XUnit testing framework. Appropriately named,
Assert statements are used in the assert part of the test. Notice the naming conven‐
tion I used for actualDiscount and ExpectedDiscount. The Assert class has several
methods, with Equal being very popular because it allows you to compare what you
expected to what you actually received during the act part.

70 | Chapter 3: Ensuring Quality

The benefits you get from unit tests potentially include better code design, verifica‐
tion that the code does what was intended, protection against regressions, deploy‐
ment validation, and documentation. The key word here is potential because different
people and/or teams choose the benefit they want from unit tests.

The better code design comes from writing tests before writing the code. You might
have heard this technique discussed in agile or behavior-driven development (BDD)
environments. In making the developer think about expected behavior ahead of time,
a clearer design might evolve. On the other hand, you might want to write unit tests
after the code is written. Developers write code and unit tests both ways and opinions
differ on what is preferable. Ultimately, having the tests, regardless of how you
arrived there, is more likely to improve code quality better than not having tests.

The second point of verifying that the code does what is intended is the biggest bene‐
fit. For simple methods that serve more as code documentation, it isn’t a big deal.
However, for complex algorithms or something critical like ensuring customers
receive the right discount, unit tests save the day.

Another important benefit is protecting against regressions. When, not if, the code
changes, you or another developer could introduce bugs where the original intent of
the code was accidentally changed. By running the unit tests after changing code, you
can find and fix bugs at the source and not later by quality-assurance professionals or
(even worse) customers.

With modern DevOps, we have the ability to automate builds through continuous
deployment. You can add unit test runs to a DevOps pipeline, which catches errors
before they’re merged with the rest of the code. The more unit tests you have, the
more this technique reduces the possibility of any developers breaking the build.

Finally, you have another level of documentation. That’s why the naming conventions
for unit tests are important. If another developer, unfamiliar with an application,
needs to understand the code, the unit tests can explain what the correct behavior of
that code should be.

This discussion was to get you started with unit tests, if you aren’t already using them.
You can learn more by searching for XUnit and other unit testing frameworks to see
how they work. If you haven’t done so yet, please review Recipe 1.2, which describes
techniques that make code more testable.

See Also
Recipe 1.2, “Removing Explicit Dependencies”

Recipe 5.1, “Reading Attributes with Reflection”

3.1 Writing a Unit Test | 71

3.2 Versioning Interfaces Safely
Problem
You need to update an interface in one of your libraries without breaking deployed
code.

Solution
Interface before update:

public interface IOrder
{
 string PrintOrder();
}

Interface after update:

public interface IOrder
{
 string PrintOrder();

 decimal GetRewards() => 0.00m;
}

CompanyOrder before update:

public class CompanyOrder : IOrder
{
 public string PrintOrder()
 {
 return "Company Order Details";
 }
}

CompanyOrder after update:

public class CompanyOrder : IOrder
{
 decimal total = 25.00m;

 public string PrintOrder()
 {
 return "Company Order Details";
 }

 public decimal GetRewards()
 {
 return total * 0.01m;
 }
}

72 | Chapter 3: Ensuring Quality

CustomerOrder before and after update:

class CustomerOrder : IOrder
{
 public string PrintOrder()
 {
 return "Customer Order Details";
 }
}

Here’s how the types are used:

class Program
{
 static void Main()
 {
 var orders = new List<IOrder>
 {
 new CustomerOrder(),
 new CompanyOrder()
 };

 foreach (var order in orders)
 {
 Console.WriteLine(order.PrintOrder());
 Console.WriteLine($"Rewards: {order.GetRewards()}");
 }
 }
}

Discussion
Prior to C# 8, we couldn’t add new members to an existing interface without chang‐
ing all the types that implement that interface. If those implementing types resided in
the same code base, it was a recoverable change. However, for framework libraries
where developers relied on an interface to work with that library, this would be a
breaking change.

The solution describes how to update interfaces and the effects. The scenario is for a
customer that might want to apply some reward points, earned previously, to a
current order.

Looking at IOrder, you can see that the after update version adds a GetRewards
method. Historically, interfaces were not allowed to have implementations. However,
in the new version of IOrder, the GetRewards method has a default implementation
that returns $0.00 as the rewards.

The solution also has a before and after version of the CompanyOrder class, where the
after version contains an implementation of GetRewards. Now, instead of the default

3.2 Versioning Interfaces Safely | 73

implementation, any code invoking GetRewards through a CompanyOrder instance
will execute the CompanyOrder implementation.

In contrast, the solution shows a CustomerOrder class that also implements IOrder.
The difference here is that CustomerOrder didn’t change. Any code invoking
GetRewards through a CompanyOrder instance will execute the default IOrder
implementation.

The Program Main method shows how this works. The orders is a list of IOrder, with
runtime instances of CustomerOrder and CompanyOrder. The foreach loops through
orders, calling IOrder methods. As described earlier, invoking GetRewards for the
CompanyOrder instance uses that class’s implementation, whereas CustomerOrder uses
the default IOrder implementation.

Essentially, the change means that if a developer implements IOrder in their own
class, such as CustomerOrder, their code doesn’t break when updating the library to
the latest version.

3.3 Simplifying Parameter Validation
Problem
You’re always looking for ways to simplify code, including parameter validation.

Solution
Verbose parameter validation syntax:

static void ProcessOrderOld(string customer, List<string> lineItems)
{
 if (customer == null)
 {
 throw new ArgumentNullException(
 nameof(customer), $"{nameof(customer)} is required.");
 }

 if (lineItems == null)
 {
 throw new ArgumentNullException(
 nameof(lineItems), $"{nameof(lineItems)} is required.");
 }

 Console.WriteLine($"Processed {customer}");
}

Brief parameter validation syntax:

static void ProcessOrderNew(string customer, List<string> lineItems)
{

74 | Chapter 3: Ensuring Quality

 _ = customer ?? throw new ArgumentNullException(
 nameof(customer), $"{nameof(customer)} is required.");
 _ = lineItems ?? throw new ArgumentNullException(
 nameof(lineItems), $"{nameof(lineItems)} is required.");

 Console.WriteLine($"Processed {customer}");
}

Discussion
The first code of a public method is often concerned with parameter validation,
which can sometimes be verbose. This section shows how to save a few lines of code
so they don’t obscure the code pertaining to the original purpose of the method.

The solution has two parameter validation techniques: verbose and brief. The verbose
method is typical, where the code ensures that a parameter isn’t null and throws
otherwise. The parentheses aren’t required in this single-line throw statement, but
some developers/teams prefer for them to be there anyway if their coding standards
require the parentheses because of a style issue or to avoid future maintenance mis‐
takes for statements that should be in the if block.

The brief method is an alternative that can save a few lines of code. It relies on newer
features of C#: the variable discard, _; and coalescing operator, ??.

The simplified parameter validation with coalescing operator and
discard fits on a single line. However, for formatting in the book,
it’s necessary to use two lines.

On the line validating customer, the code starts with an assignment to the discard,
because we need an expression. The coalescing operator is a guard that detects when
the expression is null. When the expression is null, the next statement executes,
throwing an exception.

This example was for parameter evaluation. However, there are
other scenarios where the code encounters a variable that was set to
null and needs to throw for an invalid condition or a situation that
never should have occurred. This technique lets you handle that
quickly in a single line of code.

See Also
Recipe 3.4, “Protecting Code from NullReferenceException”

3.3 Simplifying Parameter Validation | 75

3.4 Protecting Code from NullReferenceException
Problem
You’re building a reusable library and need to communicate nullable reference
semantics.

Solution
This is old-style code that doesn’t handle null references:

public class OrderLibraryNonNull
{
 // nullable property
 public string DealOfTheDay { get; set; }

 // method with null parameter
 public void AddItem(string item)
 {
 Console.Write(item.ToString());
 }

 // method with null return value
 public List<string> GetItems()
 {
 return null;
 }

 // method with null type parameter
 public void AddItems(List<string> items)
 {
 foreach (var item in items)
 Console.WriteLine(item.ToString());
 }
}

The following project file turns on the new nullable reference feature:

<Project Sdk="Microsoft.NET.Sdk">
 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>netcoreapp3.1</TargetFramework>
 <RootNamespace>Section_03_04</RootNamespace>
 <Nullable>enable</Nullable>
 </PropertyGroup>
</Project>

76 | Chapter 3: Ensuring Quality

Here’s the updated library code that communicates nullable references:

public class OrderLibraryWithNull
{
 // nullable property
 public string? DealOfTheDay { get; set; }

 // method with null parameter
 public void AddItem(string? item)
 {
 _ = item ?? throw new ArgumentNullException(
 nameof(item), $"{nameof(item)} must not be null");

 Console.Write(item.ToString());
 }

 // method with null return value
 public List<string>? GetItems()
 {
 return null;
 }

 // method with null type parameter
 public void AddItems(List<string?> items)
 {
 foreach (var item in items)
 Console.WriteLine(item?.ToString() ?? "None");
 }
}

This is an example of old-style consuming code that ignores nullable references:

static void HandleWithNullNoHandling()
{
 var orders = new OrderLibraryWithNull();

 string deal = orders.DealOfTheDay;
 Console.WriteLine(deal.ToUpper());

 orders.AddItem(null);
 orders.AddItems(new List<string> { "one", null });

 foreach (var item in orders.GetItems().ToArray())
 Console.WriteLine(item.Trim());
}

Figure 3-1 shows the warning wall the user sees from consuming code that ignores
nullable references.

3.4 Protecting Code from NullReferenceException | 77

Figure 3-1. Nullable reference warnings in Visual Studio

Finally, here’s how the consuming code can properly react to the reusable library with
the proper checks and validation for nullable references:

static void HandleWithNullAndHandling()
{
 var orders = new OrderLibraryWithNull();

 string? deal = orders.DealOfTheDay;
 Console.WriteLine(deal?.ToUpper() ?? "Deals");

 orders.AddItem(null);
 orders.AddItems(new List<string?> { "one", null });

 List<string>? items = orders.GetItems();

 if (items != null)
 foreach (var item in items.ToArray())
 Console.WriteLine(item.Trim());
}

Discussion
If you’ve been programming C# for any length of time, it’s likely that you’ve encoun‐
tered NullReferenceExceptions. A NullReferenceException occurs when referenc‐
ing a member of a variable that is still null, essentially trying to use an object that
doesn’t yet exist. Nullable references, first introduced in C# 8, help write higher-
quality code by reducing the number of NullReferenceException exceptions being
thrown. The whole concept revolves around giving the developer compile-time
notice of situations where variables are null and could potentially result in a thrown

78 | Chapter 3: Ensuring Quality

NullReferenceException. This scenario is based on the need to write a reusable
library, perhaps a separate class library or NuGet package, for other developers. Your
goal is to let them know where a potential null reference occurs in the library so they
can write code to protect against a NullReferenceException.

To demonstrate, the solution shows library code that doesn’t communicate null refer‐
ences. Essentially, this is old-style code, representing what developers would have
written before C# 8. You’ll also see how to configure a project to support C# 8 nulla‐
ble references. Then you’ll view how to change that library code so it communicates
null references to a developer who might consume it. Finally, you’ll see two examples
of consuming code: one that doesn’t handle null references and another that shows
how to protect against null references.

In the first solution example, the OrderLibraryNonNull class has members with
parameters or return types that are reference types, such as string and
List<string>, both of which could potentially be set to null. In both a nullable and
non-nullable context, this code won’t generate any warnings. Even in a nullable con‐
text, the reference types aren’t marked as nullable and dangerously communicate to
users that they’ll never receive a NullReferenceException. However, because there
could be potential NullReferenceExceptions, we don’t want to write our code like
this anymore.

The XML listing, in the solution, is the project file with a /Project/PropertyGroup/
Nullable element. Setting this to true puts the project in a nullable context. Putting a
separate class library into a nullable context might provide warnings for the class
library developer, but the consumer of that code won’t ever see those warnings.

The next solution code snippet for OrderLibraryWithNull fixes this problem. Com‐
pare it with OrderLibraryNonNull to tell the differences. When evaluating null refer‐
ences, go member by member through a type to think about how parameters and
return values affect a consumer of your library in regards to null references. There are
a lot of different null scenarios, but this example captures three common ones: prop‐
erty type, method parameter type, and generic parameter type, explained in the
following paragraphs.

There are times when a method genuinely doesn’t ever return a null
reference. Then it makes sense to not use the nullable operator to
communicate to the consumer that they don’t need to check for
null.

The DealOfTheDay shows the property type null reference scenario. Its getter prop‐
erty returns a string, which could potentially be a null value. Fix those with the
nullable operator, ? and return string?.

3.4 Protecting Code from NullReferenceException | 79

AddItems is similar, except it takes a string parameter, demonstrating the method
parameter scenario. Since string could be null, changing it to string? lets the com‐
piler know too. Notice how I used the simplified parameter checking described in
Recipe 3.3.

Sometimes, you’ll encounter nullable generic parameter types. The GetItems method
returns a List<string>, and List<T> is a reference type. Therefore, changing that to
List<string>? fixes the problem.

Finally, here’s one that’s a little tricky. The items parameter in AddItems is a
List<string>. It’s easy enough to do a parameter check to test for a null parameter,
but leaving the nullable operator off is also a good approach to let the user know that
they shouldn’t pass a null value.

That said, what if one of the values in the List<string> were null? In this case, it’s a
List<string>, but what about scenarios where the users were allowed to pass in a
Dictionary<string, string>, where the value could be null? Then annotate the
type parameter, as the example does with List<string?>, to say it’s OK for a value to
be null. Since you know that the parameter can be null, it’s important to check
before referencing its members—to avoid a NullReferenceException.

Now you have library code that’s useful for a consumer. However, it will only be use‐
ful if the consumer puts their project into a nullable context too, as shown in the
project file.

The HandleWithNullNoHandling method shows how a developer might have written
code before C# 8. However, once they put the project into a nullable context, they will
receive several warnings, as illustrated in the warning wall showing the Visual Studio
Error List window. Comparing that with the HandleWithNullAndHandling method,
the contrast is strong.

The whole process cascades, so start at the top of the method and work your way
down:

1. Because the DealOfTheDay getter can return null, set deal type to string?.
2. Since deal can be null, use the null reference operator and a coalescing operator

to ensure Console.WriteLine has something sensible to write.
3. The type passed to AddItems needs to be List<string?> to make the statement

that you’re aware that an item can be null.
4. Instead of inlining orders.GetItems in the foreach loop, refactor it out into a

new variable. This lets you check for null to avoid consuming a null iterator.

80 | Chapter 3: Ensuring Quality

See Also
Recipe 3.3, “Simplifying Parameter Validation”

3.5 Avoiding Magic Strings
Problem
A const string resides in multiple places in the app and you need a way to change it
without breaking other code.

Solution
Here’s an Order object:

public class Order
{
 public string DeliveryInstructions { get; set; }

 public List<string> Items { get; set; }
}

Here are some constants:

public class Delivery
{
 public const string NextDay = "Next Day";
 public const string Standard = "Standard";
 public const string LowFare = "Low Fare";

 public const int StandardDays = 7;
}

This is the program that uses Order and constants to calculate the number of days for
delivery:

static void Main(string[] args)
{
 var orders = new List<Order>
 {
 new Order { DeliveryInstructions = Delivery.LowFare },
 new Order { DeliveryInstructions = Delivery.NextDay },
 new Order { DeliveryInstructions = Delivery.Standard },
 };

 foreach (var order in orders)
 {
 int days;

 switch (order.DeliveryInstructions)
 {

3.5 Avoiding Magic Strings | 81

 case Delivery.LowFare:
 days = 15;
 break;
 case Delivery.NextDay:
 days = 1;
 break;
 case Delivery.Standard:
 default:
 days = Delivery.StandardDays;
 break;
 }

 Console.WriteLine(order.DeliveryInstructions);
 Console.WriteLine($"Expected Delivery Day(s): {days}");
 }
}

Discussion
After developing software for a while, most developers have seen their share of magic
values, which are literal values, such as strings and numbers, written directly into an
expression. From the perspective of the original developer, they might not be a huge
problem. However, from the perspective of a maintenance developer, those literal val‐
ues don’t immediately make sense. It’s as if they magically appeared out of nowhere,
or it feels like magic that the code even works because the meaning of the literal value
isn’t obvious.

The goal is to write code that gives a future maintainer a chance to understand.
Otherwise, project costs increase because of the time wasted trying to figure out what
some seemingly random number is. The solution is often to replace the literal value
with a variable whose name expresses the semantics of the value or why it’s there. A
commonly held belief is that readable code has a more maintainable lifetime than
comments.

Going further, a local constant helps a method with readability, but constants are
often reusable. The solution example demonstrates how some reusable constants can
be placed in their own class for reuse by other parts of the code.

In addition to items, the Order class has a DeliveryInstructions property. Here, we
make the assumption that there is a finite set of delivery instructions.

The Delivery class has const string values for NextDay, Standard, and LowFare,
characterizing how an order should be delivered. Also, notice that this class has a
StandardDays value, set to 7. Which program would you rather read—the one that
uses 7 or the one that uses a constant named StandardDays? This makes the code eas‐
ier to read, as shown in the Program class.

82 | Chapter 3: Ensuring Quality

You might first consider that the const string values in the
Delivery class might be better candidates for an enum. However,
notice that they have spaces. Also, they’ll be written with the order.
While there are techniques for using enums as string, this was
simple.
In some scenarios, you need a specific string value for lookup. It’s
a matter of opinion and what you think the right tool for the right
job is. If you find a scenario where enums are more convenient,
then use that route.

The Program class uses Orders and Delivery to calculate the number of days for
delivery, based on the order’s DeliveryInstructions. There are three orders in a list,
each with a different setting for DeliveryInstructions. The foreach loop iterates
over those orders with a switch statement that sets the number of delivery days,
depending on DeliveryInstructions.

Notice that both order list construction and the switch statement use constants from
Delivery. Had that not been done, there would have been strings everywhere. Now,
it’s easy to code with IntelliSense support, there is no duplication because the string
is in one place, and the opportunity for mistyping is minimized. Further, if the
strings need to change, that happens in one place. Additionally, you get IDE
refactoring support to change the name everywhere that constant appears in the
application.

3.6 Customizing Class String Representation
Problem
The class representation in the debugger, string parameters, and log files is illegible
and you want to customize its appearance.

Solution
Here’s a class with a custom ToString method:

public class Order
{
 public int ID { get; set; }

 public string CustomerName { get; set; }

 public DateTime Created { get; set; }

 public decimal Amount { get; set; }

3.6 Customizing Class String Representation | 83

 public override string ToString()
 {
 var stringBuilder = new StringBuilder();

 stringBuilder.Append(nameof(Order));
 stringBuilder.Append(" {\n");

 if (PrintMembers(stringBuilder))
 stringBuilder.Append(" ");

 stringBuilder.Append("\n}");

 return stringBuilder.ToString();
 }

 protected virtual bool PrintMembers(StringBuilder builder)
 {
 builder.Append(" " + nameof(ID));
 builder.Append(" = ");
 builder.Append(ID);
 builder.Append(", \n");
 builder.Append(" " + nameof(CustomerName));
 builder.Append(" = ");
 builder.Append(CustomerName);
 builder.Append(", \n");
 builder.Append(" " + nameof(Created));
 builder.Append(" = ");
 builder.Append(Created.ToString("d"));
 builder.Append(", \n");
 builder.Append(" " + nameof(Amount));
 builder.Append(" = ");
 builder.Append(Amount);

 return true;
 }
}

Here’s an example of how that’s used:

class Program
{
 static void Main(string[] args)
 {
 var order = new Order
 {
 ID = 7,
 CustomerName = "Acme",
 Created = DateTime.Now,
 Amount = 2_718_281.83m
 };

 Console.WriteLine(order);

84 | Chapter 3: Ensuring Quality

 }
}

And here’s the output:

Order {
 ID = 7,
 CustomerName = Acme,
 Created = 1/23/2021,
 Amount = 2718281.83
}

Discussion
Some types are complex, and viewing an instance in the debugger is cumbersome
because you need to dig multiple levels to examine values. Modern IDEs make this
easier, but sometimes it’s nicer to have a more readable representation of the class.

That’s where overriding the ToString method comes in. ToString is a method of the
Object type, which all types derive from. The default implementation is the fully
qualified name of the type, which is Section_03_06.Order for the Order class in the
solution. Since it’s a virtual method, you can override it.

In fact, the Order class overrides ToString with its own representation. As covered in
Recipe 2.1, the implementation uses StringBuilder. The format is using the name of
the object with properties inside of curly braces, as shown in the output.

The demo code in Main generates this output via the Console.WriteLine. This works
because Console.WriteLine calls an object’s ToString method if a parameter isn’t
already a string.

See Also
Recipe 2.1, “Processing Strings Efficiently”

3.7 Rethrowing Exceptions
Problem
An app is throwing exceptions, yet the messages are missing information, and you
need to ensure all relevant data is available during processing.

Solution
This object throws an exception:

public class Orders
{

3.7 Rethrowing Exceptions | 85

 public void Process()
 {
 throw new IndexOutOfRangeException(
 "Expected 10 orders, but found only 9.");
 }
}

Here are different ways to handle the exception:

public class OrderOrchestrator
{
 public static void HandleOrdersWrong()
 {
 try
 {
 new Orders().Process();
 }
 catch (IndexOutOfRangeException ex)
 {
 throw new InvalidOperationException(ex.Message);
 }
 }

 public static void HandleOrdersBetter1()
 {
 try
 {
 new Orders().Process();
 }
 catch (IndexOutOfRangeException ex)
 {
 throw new InvalidOperationException("Error Processing Orders", ex);
 }
 }

 public static void HandleOrdersBetter2()
 {
 try
 {
 new Orders().Process();
 }
 catch (IndexOutOfRangeException)
 {
 throw;
 }
 }

 public static void DontHandleOrders()
 {
 new Orders().Process();
 }
}

86 | Chapter 3: Ensuring Quality

This program tests each exception-handling method:

class Program
{
 static void Main(string[] args)
 {
 AppDomain.CurrentDomain.UnhandledException +=
 (object sender, UnhandledExceptionEventArgs e) =>
 System.Console.WriteLine("\n\nUnhandled Exception:\n" + e);

 try
 {
 OrderOrchestrator.HandleOrdersWrong();
 }
 catch (InvalidOperationException ex)
 {
 Console.WriteLine("Handle Orders Wrong:\n" + ex);
 }

 try
 {
 OrderOrchestrator.HandleOrdersBetter1();
 }
 catch (InvalidOperationException ex)
 {
 Console.WriteLine("\n\nHandle Orders Better #1:\n" + ex);
 }

 try
 {
 OrderOrchestrator.HandleOrdersBetter2();
 }
 catch (IndexOutOfRangeException ex)
 {
 Console.WriteLine("\n\nHandle Orders Better #2:\n" + ex);
 }

 OrderOrchestrator.DontHandleOrders();
 }
}

Here’s the output:

Handle Orders Wrong:
System.InvalidOperationException: Expected 10 orders, but found only 9.
 at Section_03_07.OrderOrchestrator.HandleOrdersWrong() in
 /CSharp9Cookbook/Chapter03/Section-03-07/OrderOrchestrator.cs:line 15
 at Section_03_07.Program.Main(String[] args) in
 /CSharp9Cookbook/Chapter03/Section-03-07/Program.cs:line 11

Handle Orders Better #1:
System.InvalidOperationException: Error Processing Orders

3.7 Rethrowing Exceptions | 87

 ---> System.IndexOutOfRangeException: Expected 10 orders, but found only 9.
 at Section_03_07.Orders.Process() in
 /CSharp9Cookbook/Chapter03/Section-03-07/Orders.cs:line 9
 at Section_03_07.OrderOrchestrator.HandleOrdersBetter1() in
 /CSharp9Cookbook/Chapter03/Section-03-07/OrderOrchestrator.cs:line 23
 --- End of inner exception stack trace ---
 at Section_03_07.OrderOrchestrator.HandleOrdersBetter1() in
 /CSharp9Cookbook/Chapter03/Section-03-07/OrderOrchestrator.cs:line 27
 at Section_03_07.Program.Main(String[] args) in
 /CSharp9Cookbook/Chapter03/Section-03-07/Program.cs:line 20

Handle Orders Better #2:
System.IndexOutOfRangeException: Expected 10 orders, but found only 9.
 at Section_03_07.Orders.Process() in
 /CSharp9Cookbook/Chapter03/Section-03-07/Orders.cs:line 9
 at Section_03_07.OrderOrchestrator.HandleOrdersBetter2() in
 /CSharp9Cookbook/Chapter03/Section-03-07/OrderOrchestrator.cs:line 35
 at Section_03_07.Program.Main(String[] args) in
 /CSharp9Cookbook/Chapter03/Section-03-07/Program.cs:line 29

Unhandled Exception:
System.UnhandledExceptionEventArgs
Unhandled exception. System.IndexOutOfRangeException:
 Expected 10 orders, but found only 9.
 at Section_03_07.Orders.Process() in
 /CSharp9Cookbook/Chapter03/Section-03-07/Orders.cs:line 9
 at Section_03_07.OrderOrchestrator.DontHandleOrders() in
 /CSharp9Cookbook/Chapter03/Section-03-07/OrderOrchestrator.cs:line 45
 at Section_03_07.Program.Main(String[] args) in
 /CSharp9Cookbook/Chapter03/Section-03-07/Program.cs:line 40

Discussion
There are various ways to handle exceptions, with some being better than others.
From a troubleshooting perspective, we generally want a log of exceptions with
enough meaningful information to help solve the problem. That is the point of this
section in determining what the better solution should be.

The Orders class Process method throws an IndexOutOfRangeException, and the
OrderOrchestrator class handles that exception in a few different ways: one which
you should avoid and two that are better, depending on what makes sense for your
scenario.

The HandleOrdersWrong method takes the Message property of the original exception
and throws a new InvalidOperationException with that message as its input. The
scenario models a situation where the handling analyzes the situation and tries to
throw an exception that makes more sense or provides more information than what
the original exception offered. However, this causes another problem where we lose

88 | Chapter 3: Ensuring Quality

stack trace information that’s critical to fixing the problem. This example has a rela‐
tively shallow hierarchy, but in practice the exception could have been thrown via
multiple levels down and arrived via various paths. You can see this problem in the
output where the stack trace shows that the exception originated in the OrderOrches
trator.HandleOrdersWrong method, rather than its true source in Orders.Process.

Another thing you should never do is rethrow the original excep‐
tion, like this:

try
{
 OrderOrchestrator.HandleOrdersWrong();
}
catch (InvalidOperationException ex)
{
 throw ex;
}

The problem with this is that rethrowing the original exception
loses the stack trace. Without the original stack trace, developers
trying to debug the program won’t know where the exception origi‐
nated. Further, the original exception might have been different
from the one you received, potentially containing more detailed
information that no one would see.

The HandleOrdersBetter1 method improves on this scenario by adding an addi‐
tional argument, ex, to the innerException parameter. This provides the best of both
worlds because you can now throw an exception with additional data, as well as pre‐
serving the entire stack trace. You can see that the path of the exception originated in
Orders.Process in the output (delimited by --- End of inner exception stack
trace ---).

HandleOrdersBetter2 just throws the original exception. The assumption here is that
the logic wasn’t able to do something intelligent with the exception or log and
rethrow. As shown in the output, the stack trace also originates at Orders.Process.

There are a lot of strategies for handling exceptions and this covers one aspect. In this
case, considering the preservation of original stack trace for later debugging, you
should rethrow. As always, think about your scenario and what makes sense to you.

Occasionally, you might encounter a situation where code throws an exception and
there isn’t a handling strategy. The OrderOrchestrator.DontHandleOrders doesn’t
do any handling, and the Main method doesn’t protect with a try/catch. In this case,
you can still intercept the exception by adding an event handler to AppDomain.
CurrentDomain.UnhandledException, as shown at the end of the Main method. You

3.7 Rethrowing Exceptions | 89

want to assign the event handler before running any code, otherwise you’ll never han‐
dle the exception.

See Also
Recipe 1.9, “Designing a Custom Exception”

3.8 Managing Process Status
Problem
The user started a process, but after an exception, the user interface status wasn’t
updated.

Solution
This method throws an exception:

static void ProcessOrders()
{
 throw new ArgumentException();
}

This is the code you should not write:

static void Main()
{
 Console.WriteLine("Processing Orders Started");

 ProcessOrders();

 Console.WriteLine("Processing Orders Complete");
}

Here’s the code you should write instead:

static void Main()
{
 try
 {
 Console.WriteLine("Processing Orders Started");

 ProcessOrders();
 }
 catch (ArgumentException ae)
 {
 Console.WriteLine('\n' + ae.ToString() + '\n');
 }
 finally
 {
 Console.WriteLine("Processing Orders Complete");

90 | Chapter 3: Ensuring Quality

 }
}

Discussion
The problem statement mentions there was an exception that occurred, which is true.
However, from a user perspective, they won’t receive a message or status explaining
that a problem occurred and their job didn’t finish. That’s because in the first Main
method, if an exception throws during ProcessOrder, the “Processing Orders Com‐
plete” message won’t appear to the user.

This is a good use case for a try/finally block, which the second Main method uses.
Put all the code that should run in a try block and a final status in the finally block.
If an exception throws, you can catch it, log, and let the user know that their job was
unsuccessful.

Although this was an example in a console application, this is a good technique for
UI code too. When starting a process, you might have a wait notification like an
hourglass or progress indicator. Turning the notification off is a task that the finally
block can help with also.

See Also
Recipe 3.9, “Building Resilient Network Connections”

Recipe 3.10, “Measuring Performance”

3.9 Building Resilient Network Connections
Problem
The app communicates with an unreliable backend service and you want to prevent it
from failing.

Solution
This method throws an exception:

static async Task GetOrdersAsync()
{
 throw await Task.FromResult(
 new HttpRequestException(
 "Timeout", null, HttpStatusCode.RequestTimeout));
}

3.9 Building Resilient Network Connections | 91

Here’s a technique to handle network errors:

public static async Task Main()
{
 const int DelayMilliseconds = 500;
 const int RetryCount = 3;

 bool success = false;
 int tryCount = 0;

 try
 {
 do
 {
 try
 {
 Console.WriteLine("Getting Orders");
 await GetOrdersAsync();

 success = true;
 }
 catch (HttpRequestException hre)
 when (hre.StatusCode == HttpStatusCode.RequestTimeout)
 {
 tryCount++;

 int millisecondsToDelay = DelayMilliseconds * tryCount;
 Console.WriteLine(
 $"Exception during processing—" +
 $"delaying for {millisecondsToDelay} milliseconds");

 await Task.Delay(millisecondsToDelay);
 }

 } while (tryCount < RetryCount);
 }
 finally
 {
 if (success)
 Console.WriteLine("Operation Succeeded");
 else
 Console.WriteLine("Operation Failed");
 }
}

And here’s the output:

 Getting Orders
 Exception during processing - delaying for 500 milliseconds
 Getting Orders
 Exception during processing - delaying for 1000 milliseconds
 Getting Orders

92 | Chapter 3: Ensuring Quality

 Exception during processing - delaying for 1500 milliseconds
 Operation Failed

Discussion
Anytime you’re doing out-of-process work, there’s a possibility of errors or timeouts.
Often you don’t have control of the application you’re interacting with, and it pays to
write defensive code. In particular, code that does networking is prone to errors unre‐
lated to the quality of code at either end of the connection due to latency, timeouts, or
hardware issues.

This solution simulates a network connection issue through GetOrdersAsync. It
throws an HttpRequestException with a RequestTimeout status. This is typical, and
the Main method shows how to mitigate these types of problems. The goal is to retry
the connection a certain number of times with delay between tries.

First, notice that success initializes to false, and the finally of the try/finally
lets the user know the result of the operation, based on success. Following the nest‐
ing of try/do/try, the last line of the try block sets success to true because all of
the logic is complete—if an exception occurred earlier, the program would not have
reached that line.

The do/while loop iterates RetryCount times. We initialize tryCount to 0 and incre‐
ment it in the catch block. That’s because if there’s an error, we know we’ll retry, and
we want to ensure we don’t exceed a specified number of retries. RetryCount is a
const, initialized to 3. You can adjust RetryCount to as many times as it makes sense
to you. If the operation is time sensitive, you might want to limit retries and send a
notification of a critical error. Another scenario might be that you know the other
end of the connection will eventually come back online and can set RetryCount to a
very high number.

Whenever there is an exception, you often don’t want to immediately make the
request again. One of the reasons the timeout occurred might be that the other end‐
point might not scale well, and overloading it with more requests can overwhelm the
server. Also, some third-party APIs rate-limit clients, and immediate back-to-back
requests eat up the rate-limit count. Some API providers might even block your app
for excessive connection requests.

The DelayMilliseconds helps your retry policy, initialized to 500 milliseconds. You
might adjust this if you find that retries are still too fast. If a single delay time works,
then you can use that. However, a lot of situations call for a linear or exponential
back-off strategy. You can see that the solution uses a linear back-off, multiplying
DelayMilliseconds by tryCount. Since tryCount initializes to 0, we increment it
first.

3.9 Building Resilient Network Connections | 93

You might want to log retries as warning, rather than error. Admin‐
istrators, QA, or anyone looking at the logs (or reports) might be
unnecessarily alarmed. They see what looks like errors, whereas
your application is reacting and repairing appropriately to typical
network behavior.

Alternatively, you might need to use an exponential back-off strategy, such as taking
DelayMilliseconds to the tryCount power—Math.Pow(DelayMilliseconds, try

Count). You might experiment, e.g., log errors and review periodically, to see what
works best for your situation.

3.10 Measuring Performance
Problem
You know of a few ways to write an algorithm and need to test which algorithm per‐
forms the best.

Solution
Here’s the object type we’ll operate on:

public class OrderItem
{
 public decimal Cost { get; set; }
 public string Description { get; set; }
}

This is the code that creates a list of OrderItem:

static List<OrderItem> GetOrderItems()
{
 const int ItemCount = 10000;

 var items = new List<OrderItem>();
 var rand = new Random();

 for (int i = 0; i < ItemCount; i++)
 items.Add(
 new OrderItem
 {
 Cost = rand.Next(i),
 Description = "Order Item #" + (i + 1)
 });

 return items;
}

94 | Chapter 3: Ensuring Quality

Here’s an inefficient string concatenation method:

static string DoStringConcatenation(List<OrderItem> lineItems)
{
 var stopwatch = new Stopwatch();

 try
 {
 stopwatch.Start();

 string report = "";

 foreach (var item in lineItems)
 report += $"{item.Cost:C} - {item.Description}\n";

 Console.WriteLine(
 $"Time for String Concatenation: " +
 $"{stopwatch.ElapsedMilliseconds}");

 return report;
 }
 finally
 {
 stopwatch.Stop();
 }
}

Here’s the faster StringBuilder method:

static string DoStringBuilderConcatenation(List<OrderItem> lineItems)
{
 var stopwatch = new Stopwatch();
 try
 {
 stopwatch.Start();

 var reportBuilder = new StringBuilder();

 foreach (var item in lineItems)
 reportBuilder.Append($"{item.Cost:C} - {item.Description}\n");

 Console.WriteLine(
 $"Time for String Builder Concatenation: " +
 $"{stopwatch.ElapsedMilliseconds}");

 return reportBuilder.ToString();
 }
 finally
 {
 stopwatch.Stop();
 }
}

3.10 Measuring Performance | 95

This code drives the demo:

static void Main()
{
 List<OrderItem> lineItems = GetOrderItems();

 DoStringConcatenation(lineItems);

 DoStringBuilderConcatenation(lineItems);
}

And here’s the output:

 Time for String Concatenation: 1137
 Time for String Builder Concatenation: 2

Discussion
Recipe 2.1 discussed the benefits of StringBuilder over string concatenation, which
stressed performance as the primary driver. However, it didn’t explain how to meas‐
ure the performance of the code. This section builds on that and shows how to meas‐
ure algorithmic performance through code.

As our computers become increasingly faster by the year (or less),
the results of the StringBuilder method will move closer to 0. To
experience the real magnitude of time difference between the two
methods, add another 0 to ItemCount in GetOrderItems.

In both the StringConcatenation and StringBuilderConcatenation methods, you
will find an instance of StopWatch, which is in the System.Diagnostics namespace.

Calling Start starts the timer and Stop stops the timer. Notice that the algorithms
use try/finally as described in Recipe 3.8 to ensure the timer stops.

Console.WriteLine uses stopwatch.ElapsedMilliseconds at the end of each algo‐
rithm to show how much time the algorithm used.

As shown in the output, the running time difference between StringBuilder and
string concatenation is dramatic.

See Also
Recipe 2.1, “Processing Strings Efficiently”

Recipe 3.8, “Managing Process Status”

96 | Chapter 3: Ensuring Quality

CHAPTER 4

Querying with LINQ

LINQ has been around since C# 3. It gives developers a means to query data sources,
using syntax with accents of SQL. Because LINQ is part of the language, you experi‐
ence features like syntax highlighting and IntelliSense in IDEs.

LINQ is popularly known as a tool for querying databases, with the goal of reducing
what is called impedance mismatch, which is the difference between database repre‐
sentation of data and C# objects. Really, we can build LINQ providers for any data
technology. In fact, the author wrote an open source provider for the Twitter API
named LINQ to Twitter.

The examples in this chapter take a different approach. Instead of an external data
source, they use a provider that specifically focuses on in-memory data sources
referred to as LINQ to Objects. While any in-memory data manipulation can be per‐
formed with C# loops and imperative logic, using LINQ instead can often simplify
the code because of its declarative nature—specifying what to do rather than how to
do it. Each section has a unique representation of one or more entities (objects to be
queried) and an InMemoryContext that sets up the in-memory data to be queried.

A couple of recipes in this chapter are simple, such as transforming object shape and
simplifying queries. However, there are important points to be made that also clarify
and simplify your code.

Pulling together code from different data sources can result in confusing code. The
sections on joins, left joins, and grouping describe how you can simplify these scenar‐
ios. There’s also a related section for operating on sets.

A huge security problem with search forms and queries appears when developers
build their queries with concatenated strings. While that might sound like a quick
and easy solution, the cost is often too high. This chapter has a couple of sections that
show how LINQ deferred execution lets you build queries dynamically. Another

97

https://oreil.ly/1YEZ8

section explains an important technique for search queries and how they give you the
ability to use expression trees for dynamic clause generation.

4.1 Transforming Object Shape
Problem
You want data in a custom shape that differs from the original data source.

Solution
Here’s the entity to reshape:

public class SalesPerson
{
 public int ID { get; set; }

 public string Name { get; set; }

 public string Address { get; set; }

 public string City { get; set; }

 public string PostalCode { get; set; }

 public string Region { get; set; }

 public string ProductType { get; set; }
}

This is the data source:

public class InMemoryContext
{
 List<SalesPerson> salesPeople =
 new List<SalesPerson>
 {
 new SalesPerson
 {
 ID = 1,
 Address = "123 1st Street",
 City = "First City",
 Name = "First Person",
 PostalCode = "45678",
 Region = "Region #1"
 },
 new SalesPerson
 {
 ID = 2,
 Address = "234 2nd Street",
 City = "Second City",

98 | Chapter 4: Querying with LINQ

 Name = "Second Person",
 PostalCode = "56789",
 Region = "Region #2"
 },
 new SalesPerson
 {
 ID = 3,
 Address = "345 3rd Street",
 City = "Third City",
 Name = "Third Person",
 PostalCode = "67890",
 Region = "Region #3"
 },
 };

 public List<SalesPerson> SalesPeople => salesPeople;
}

This code performs the projection that reshapes the data:

class Program
{
 static void Main()
 {
 var context = new InMemoryContext();

 var salesPersonLookup =
 (from person in context.SalesPeople
 select (person.ID, person.Name))
 .ToList();

 Console.WriteLine("Sales People\n");

 salesPersonLookup.ForEach(person =>
 Console.WriteLine($"{person.ID}. {person.Name}"));
 }
}

Discussion
Transforming object shape is referred to as a projection in LINQ. A few common rea‐
sons you might want to do this is to create lookup lists, create a view or view model
object, or translate data transfer objects (DTOs) to something your app works with
better.

When doing database queries using LINQ to Entities (a different provider for data‐
bases), or consuming DTOs, data often arrives in a format representing the original
data source. However, if you want to work with domain data or bind to UIs, the pure
data representation doesn’t have the right shape. Moreover, data representation often
has attributes and semantics of the object-relational model (ORM) or data access
library. Some developers try to bind these data objects to their UI because they don’t

4.1 Transforming Object Shape | 99

want to create a new object type. While that’s understandable, because no one wants
to do more work than is necessary, problems occur because UI code often requires a
different shape of the data and requires its own validation and attributes. So, the
problem here is that you’re using one object for two different purposes. Ideally, an
object should have a single responsibility, and mixing it up like this often results in
confusing code that’s not as easy to maintain.

Another scenario that the solution demonstrates is the case where you only want a
lookup list, with an ID and displayable value. This is useful when populating UI ele‐
ments such as checkbox lists, radio button groups, combo boxes, or dropdowns.
Querying entire entities is wasteful and slow (in the case of an out-of-process or
cross-network database connection) when you only need the ID and something to
display to the user.

The Main method of the solution demonstrates this. It queries the SalesPeople
property of InMemoryContext, which is a list of SalesPerson, and the select clause
re-shapes the result into a tuple of ID and Name.

The select clause in the solution uses a tuple. However, you could
project (only the requested fields) into an anonymous type, a Sales
Person type, or a new custom type.

Although this was an in-memory operation, the benefit of this technique comes when
querying a database with a library like LINQ to Entities. In that case, LINQ to Entities
translates the LINQ query into a database query that only requests the fields specified
in the select clause.

4.2 Joining Data
Problem
You need to pull data from different sources into one record.

Solution
Here are the entities to join:

public class Product
{
 public int ID { get; set; }

 public string Name { get; set; }

 public string Type { get; set; }

100 | Chapter 4: Querying with LINQ

 public decimal Price { get; set; }

 public string Region { get; set; }
}

public class SalesPerson
{
 public int ID { get; set; }

 public string Name { get; set; }

 public string Address { get; set; }

 public string City { get; set; }

 public string PostalCode { get; set; }

 public string Region { get; set; }

 public string ProductType { get; set; }
}

This is the data source:

public class InMemoryContext
{
 List<SalesPerson> salesPeople =
 new List<SalesPerson>
 {
 new SalesPerson
 {
 ID = 1,
 Address = "123 1st Street",
 City = "First City",
 Name = "First Person",
 PostalCode = "45678",
 Region = "Region #1",
 ProductType = "Type 2"
 },
 new SalesPerson
 {
 ID = 2,
 Address = "234 2nd Street",
 City = "Second City",
 Name = "Second Person",
 PostalCode = "56789",
 Region = "Region #2",
 ProductType = "Type 3"
 },
 new SalesPerson
 {
 ID = 3,

4.2 Joining Data | 101

 Address = "345 3rd Street",
 City = "Third City",
 Name = "Third Person",
 PostalCode = "67890",
 Region = "Region #3",
 ProductType = "Type 1"
 },
 new SalesPerson
 {
 ID = 4,
 Address = "678 9th Street",
 City = "Fourth City",
 Name = "Fourth Person",
 PostalCode = "90123",
 Region = "Region #1",
 ProductType = "Type 2"
 },
 };

 List<Product> products =
 new List<Product>
 {
 new Product
 {
 ID = 1,
 Name = "Product 1",
 Price = 123.45m,
 Type = "Type 2",
 Region = "Region #1",
 },
 new Product
 {
 ID = 2,
 Name = "Product 2",
 Price = 456.78m,
 Type = "Type 2",
 Region = "Region #2",
 },
 new Product
 {
 ID = 3,
 Name = "Product 3",
 Price = 789.10m,
 Type = "Type 3",
 Region = "Region #1",
 },
 new Product
 {
 ID = 4,
 Name = "Product 4",
 Price = 234.56m,
 Type = "Type 2",

102 | Chapter 4: Querying with LINQ

 Region = "Region #1",
 },
 };

 public List<SalesPerson> SalesPeople => salesPeople;

 public List<Product> Products => products;
}

This is the code that joins the entities:

class Program
{
 static void Main()
 {
 var context = new InMemoryContext();

 var salesProducts =
 (from person in context.SalesPeople
 join product in context.Products on
 (person.Region, person.ProductType)
 equals
 (product.Region, product.Type)
 select new
 {
 Person = person.Name,
 Product = product.Name,
 product.Region,
 product.Type
 })
 .ToList();

 Console.WriteLine("Sales People\n");

 salesProducts.ForEach(salesProd =>
 Console.WriteLine(
 $"Person: {salesProd.Person}\n" +
 $"Product: {salesProd.Product}\n" +
 $"Region: {salesProd.Region}\n" +
 $"Type: {salesProd.Type}\n"));
 }
}

Discussion
LINQ joins are useful when data comes from more than one source. A company
might have merged and you need to pull in data from each of their databases, you
might be using a microservice architecture where the data comes from different serv‐
ices, or some of the data was created in-memory and you need to correlate it with
database records.

4.2 Joining Data | 103

Often, you can’t use an ID because if the data comes from different sources, they’ll
never match anyway. The best you can hope for is that some of the fields line up. That
said, if you have a single field that matches, that’s great. The Main method of the solu‐
tion uses a composite key of Region and ProductType, relying on the value equality
inherent in tuples.

The select clause uses an anonymous type for a custom projec‐
tion. Another example of shaping object data is discussed in Recipe
4.1.

Even though this example uses a tuple for the composite key, you could use an anony‐
mous type for the same results. The tuple uses slightly less syntax.

See Also
Recipe 4.1, “Transforming Object Shape”

4.3 Performing Left Joins
Problem
You need a join on two data sources, but one of those data sources doesn’t have a
matching record.

Solution
Here are the entities to perform a left join with:

public class Product
{
 public int ID { get; set; }

 public string Name { get; set; }

 public string Type { get; set; }

 public decimal Price { get; set; }

 public string Region { get; set; }
}

public class SalesPerson
{
 public int ID { get; set; }

104 | Chapter 4: Querying with LINQ

 public string Name { get; set; }

 public string Address { get; set; }

 public string City { get; set; }

 public string PostalCode { get; set; }

 public string Region { get; set; }

 public string ProductType { get; set; }
}

This is the data source:

public class InMemoryContext
{
 List<SalesPerson> salesPeople =
 new List<SalesPerson>
 {
 new SalesPerson
 {
 ID = 1,
 Address = "123 1st Street",
 City = "First City",
 Name = "First Person",
 PostalCode = "45678",
 Region = "Region #1",
 ProductType = "Type 2"
 },
 new SalesPerson
 {
 ID = 2,
 Address = "234 2nd Street",
 City = "Second City",
 Name = "Second Person",
 PostalCode = "56789",
 Region = "Region #2",
 ProductType = "Type 3"
 },
 new SalesPerson
 {
 ID = 3,
 Address = "345 3rd Street",
 City = "Third City",
 Name = "Third Person",
 PostalCode = "67890",
 Region = "Region #3",
 ProductType = "Type 1"
 },
 new SalesPerson
 {
 ID = 3,

4.3 Performing Left Joins | 105

 Address = "678 9th Street",
 City = "Fourth City",
 Name = "Fourth Person",
 PostalCode = "90123",
 Region = "Region #1",
 ProductType = "Type 2"
 },
 };

 List<Product> products =
 new List<Product>
 {
 new Product
 {
 ID = 1,
 Name = "Product 1",
 Price = 123.45m,
 Type = "Type 2",
 Region = "Region #1",
 },
 new Product
 {
 ID = 2,
 Name = "Product 2",
 Price = 456.78m,
 Type = "Type 2",
 Region = "Region #2",
 },
 new Product
 {
 ID = 3,
 Name = "Product 3",
 Price = 789.10m,
 Type = "Type 3",
 Region = "Region #1",
 },
 new Product
 {
 ID = 4,
 Name = "Product 4",
 Price = 234.56m,
 Type = "Type 2",
 Region = "Region #1",
 },
 };

 public List<SalesPerson> SalesPeople => salesPeople;

 public List<Product> Products => products;
}

106 | Chapter 4: Querying with LINQ

The following code performs the left join operation:

class Program
{
 static void Main()
 {
 var context = new InMemoryContext();

 var salesProducts =
 (from product in context.Products
 join person in context.SalesPeople on
 (product.Region, product.Type)
 equals
 (person.Region, person.ProductType)
 into prodPersonTemp
 from prodPerson in prodPersonTemp.DefaultIfEmpty()
 select new
 {
 Person = prodPerson?.Name ?? "(none)",
 Product = product.Name,
 product.Region,
 product.Type
 })
 .ToList();

 Console.WriteLine("Sales People\n");

 salesProducts.ForEach(salesProd =>
 Console.WriteLine(
 $"Person: {salesProd.Person}\n" +
 $"Product: {salesProd.Product}\n" +
 $"Region: {salesProd.Region}\n" +
 $"Type: {salesProd.Type}\n"));
 }
}

And here’s the output:

Sales People

Person: First Person
Product: Product 1
Region: Region #1
Type: Type 2

Person: Fourth Person
Product: Product 1
Region: Region #1
Type: Type 2

Person: (none)
Product: Product 2
Region: Region #2

4.3 Performing Left Joins | 107

Type: Type 2

Person: (none)
Product: Product 3
Region: Region #1
Type: Type 3

Person: First Person
Product: Product 4
Region: Region #1
Type: Type 2

Person: Fourth Person
Product: Product 4
Region: Region #1
Type: Type 2

Discussion
This solution is similar to the join, discussed in Recipe 4.3. The difference is in the
LINQ query in the Main method. Notice the into prodPersonTemp clause. This is a
temporary holder for the joined data. The second from clause (below into) queries
prodPersonTemp.DefaultIfEmpty().

The DefaultIfEmpty() causes the left join, where the prodPerson range variable
receives all of the product objects and only the matching person objects.

The first from clause specifies the left side of the query, Products. The join clause
specifies the right side of the query, SalesPeople, which might not have matching
values.

Notice how the select clause checks prodPerson?.Name for null and replaces it with
(none). This ensures the output indicates that there wasn’t a match, rather than rely‐
ing on later code to check for null.

Demonstrating left join results in the solution output. Notice that output for Product
1 and Product 4 have a Person entry. However, there wasn’t a matching Person, show‐
ing as (none), for Products 2 and 3.

4.4 Grouping Data
Problem
You need to aggregate data into custom groups.

Solution
Here’s the entity to group:

108 | Chapter 4: Querying with LINQ

public class SalesPerson
{
 public int ID { get; set; }

 public string Name { get; set; }

 public string Address { get; set; }

 public string City { get; set; }

 public string PostalCode { get; set; }

 public string Region { get; set; }

 public string ProductType { get; set; }
}

This is the data source:

public class InMemoryContext
{
 List<SalesPerson> salesPeople =
 new List<SalesPerson>
 {
 new SalesPerson
 {
 ID = 1,
 Address = "123 1st Street",
 City = "First City",
 Name = "First Person",
 PostalCode = "45678",
 Region = "Region #1"
 },
 new SalesPerson
 {
 ID = 2,
 Address = "234 2nd Street",
 City = "Second City",
 Name = "Second Person",
 PostalCode = "56789",
 Region = "Region #2"
 },
 new SalesPerson
 {
 ID = 3,
 Address = "345 3rd Street",
 City = "Third City",
 Name = "Third Person",
 PostalCode = "67890",
 Region = "Region #3"
 },
 new SalesPerson
 {

4.4 Grouping Data | 109

 ID = 4,
 Address = "678 9th Street",
 City = "Second City",
 Name = "Fourth Person",
 PostalCode = "56788",
 Region = "Region #2"
 },
 };

 public List<SalesPerson> SalesPeople => salesPeople;
}

The following code groups the data:

class Program
{
 static void Main()
 {
 var context = new InMemoryContext();

 var salesPeopleByRegion =
 (from person in context.SalesPeople
 group person by person.Region
 into personGroup
 select personGroup)
 .ToList();

 Console.WriteLine("Sales People by Region");

 foreach (var region in salesPeopleByRegion)
 {
 Console.WriteLine($"\nRegion: {region.Key}");

 foreach (var person in region)
 Console.WriteLine($" {person.Name}");
 }
 }
}

Discussion
Grouping is useful when you need a hierarchy of data. It creates a parent/children
relationship between data where the parent is the main category and the children are
objects (representing data records) in that category.

In the solution, each SalesPerson has a Region property, whose values are repeated
in the InMemoryContext data source. This helps show how multiple SalesPerson
entities can be grouped into a single region.

In the Main method query, there’s a group by clause, specifying the range variable,
person, to group and the key, Region, to group by. The personGroup holds the result.

110 | Chapter 4: Querying with LINQ

In this example, the select clause uses the entire personGroup, rather than doing a
custom projection.

Inside of salesPeopleByRegion is a set of top-level objects, representing each group.
Each of those groups has a collection of objects belonging to that group, like this:

Key (Region):
 Items (IEnumerable<SalesPerson>)

LINQ providers targeting databases, such as LINQ to Entities for
SQL Server, return IQueryable<T>, for nonmaterialized queries.
Materialization occurs when you use an operator, such as Count()
or ToList(), that actually executes the query and returns an int or
List<T>, respectively. In contrast, the nonmaterialized type
returned by LINQ to Objects is IEnumerable<T>.

The foreach loop demonstrates this group structure and how it could be used. At the
top level, each object has a Key property. Because the original query was by Region,
that key will have the name of the Region.

The nested foreach loop iterates on the group, reading each SalesPerson instance in
that group. You can see where it prints out the Name of each SalesPerson instance in
that group.

4.5 Building Incremental Queries
Problem
You need to customize a query based on a user’s search criteria but don’t want to con‐
catenate strings.

Solution
This is the type to query:

public class SalesPerson
{
 public int ID { get; set; }

 public string Name { get; set; }

 public string Address { get; set; }

 public string City { get; set; }

 public string PostalCode { get; set; }

4.5 Building Incremental Queries | 111

 public string Region { get; set; }

 public string ProductType { get; set; }
}

Here’s the data source:

public class InMemoryContext
{
 List<SalesPerson> salesPeople =
 new List<SalesPerson>
 {
 new SalesPerson
 {
 ID = 1,
 Address = "123 1st Street",
 City = "First City",
 Name = "First Person",
 PostalCode = "45678",
 Region = "Region #1",
 ProductType = "Type 2"
 },
 new SalesPerson
 {
 ID = 2,
 Address = "234 2nd Street",
 City = "Second City",
 Name = "Second Person",
 PostalCode = "56789",
 Region = "Region #2",
 ProductType = "Type 3"
 },
 new SalesPerson
 {
 ID = 3,
 Address = "345 3rd Street",
 City = "Third City",
 Name = "Third Person",
 PostalCode = "67890",
 Region = "Region #3",
 ProductType = "Type 1"
 },
 new SalesPerson
 {
 ID = 4,
 Address = "678 9th Street",
 City = "Fourth City",
 Name = "Fourth Person",
 PostalCode = "90123",
 Region = "Region #1",
 ProductType = "Type 2"
 },
 };

112 | Chapter 4: Querying with LINQ

 public List<SalesPerson> SalesPeople => salesPeople;
}

This code builds a dynamic query:

class Program
{
 static void Main()
 {
 SalesPerson searchCriteria = GetCriteriaFromUser();

 List<SalesPerson> salesPeople = QuerySalesPeople(searchCriteria);

 PrintResults(salesPeople);
 }

 static SalesPerson GetCriteriaFromUser()
 {
 var person = new SalesPerson();

 Console.WriteLine("Sales Person Search");
 Console.WriteLine("(press Enter to skip an entry)\n");

 Console.Write($"{nameof(SalesPerson.Address)}: ");
 person.Address = Console.ReadLine();

 Console.Write($"{nameof(SalesPerson.City)}: ");
 person.City = Console.ReadLine();

 Console.Write($"{nameof(SalesPerson.Name)}: ");
 person.Name = Console.ReadLine();

 Console.Write($"{nameof(SalesPerson.PostalCode)}: ");
 person.PostalCode = Console.ReadLine();

 Console.Write($"{nameof(SalesPerson.ProductType)}: ");
 person.ProductType = Console.ReadLine();

 Console.Write($"{nameof(SalesPerson.Region)}: ");
 person.Region = Console.ReadLine();

 return person;
 }

 static List<SalesPerson> QuerySalesPeople(SalesPerson criteria)
 {
 var ctx = new InMemoryContext();

 IEnumerable<SalesPerson> salesPeopleQuery =
 from people in ctx.SalesPeople
 select people;

4.5 Building Incremental Queries | 113

 if (!string.IsNullOrWhiteSpace(criteria.Address))
 salesPeopleQuery = salesPeopleQuery.Where(
 person => person.Address == criteria.Address);

 if (!string.IsNullOrWhiteSpace(criteria.City))
 salesPeopleQuery = salesPeopleQuery.Where(
 person => person.City == criteria.City);

 if (!string.IsNullOrWhiteSpace(criteria.Name))
 salesPeopleQuery = salesPeopleQuery.Where(
 person => person.Name == criteria.Name);

 if (!string.IsNullOrWhiteSpace(criteria.PostalCode))
 salesPeopleQuery = salesPeopleQuery.Where(
 person => person.PostalCode == criteria.PostalCode);

 if (!string.IsNullOrWhiteSpace(criteria.ProductType))
 salesPeopleQuery = salesPeopleQuery.Where(
 person => person.ProductType == criteria.ProductType);

 if (!string.IsNullOrWhiteSpace(criteria.Region))
 salesPeopleQuery = salesPeopleQuery.Where(
 person => person.Region == criteria.Region);

 List<SalesPerson> salesPeople = salesPeopleQuery.ToList();

 return salesPeople;
 }

 static void PrintResults(List<SalesPerson> salesPeople)
 {
 Console.WriteLine("\nSales People\n");

 salesPeople.ForEach(person =>
 Console.WriteLine($"{person.ID}. {person.Name}"));
 }
}

Discussion
One of the worst things a developer can do from a security perspective is to build a
concatenated string from user input to send as a SQL statement to a database. The
problem is that string concatenation allows the user’s input to be interpreted as part
of the query. In most cases, people just want to perform a search. However, there are
malicious users who intentionally probe systems for this type of vulnerability. They
don’t have to be professional hackers as there are plenty of novices (often referred to
as script kiddies) who want to practice and have fun. In the worst case, hackers can
access private or proprietary information or even take over a machine. Once into one
machine on a network, the hacker is on the inside and can monkey bar into other

114 | Chapter 4: Querying with LINQ

computers and take over your network. This particular problem is called a SQL injec‐
tion attack and this section explains how to avoid it.

From a security point of view, no computer is theoretically 100%
secure because there’s always a level of effort, either physical or vir‐
tual, where a computer can be broken into. In practice, security
efforts can grow to a point that they become prohibitively expen‐
sive to build, purchase, and maintain. Your goal is to perform a
threat assessment of a system (outside the scope of this book) that’s
strong enough to deter potential hackers. In most cases, having not
been able to perform the typical attacks, like SQL injection, a
hacker will assess their own costs of attacking your system and
move on to a different system that is less time consuming or expen‐
sive. This section offers a low-cost option to solve a high-cost
security disaster.

The scenario for this section imagines a situation where the user can perform a
search. They fill in the data and the application dynamically builds a query, based on
the criteria the user entered.

In the solution, the Program class has a method named GetCriteriaFromUser. The
purpose of this method is to ask for a matching value for each field inside of Sales
Person. This becomes the criteria for building a dynamic query. Any fields left blank
aren’t included in the final query.

The QuerySalesPeople method starts with a LINQ query for ctx.SalesPeople.
However, notice that this isn’t in parentheses or calling the ToList operator, like pre‐
vious sections. Calling ToList would have materialized the query, causing it to exe‐
cute. However, we aren’t doing that here—the code is just building a query. That’s why
the salesPersonQuery has the IEnumerable<SalesPerson> type, indicating that it’s a
LINQ to Objects result, rather than a List<SalesPerson> we would have gotten back
via a call to ToList.

This recipe takes advantage of a feature of LINQ, known as deferred
query execution, which allows you to build the query that won’t
execute until you tell it to. In addition to facilitating dynamic query
construction, deferred execution is also efficient because there’s
only a single query sent to the database, rather than each time the
algorithm calls a specific LINQ operator.

With the salesPersonQuery reference, the code checks each SalesPerson field for a
value. If the user did enter a value for that field, the code uses a Where operator to
check for equality with what the user entered.

4.5 Building Incremental Queries | 115

You’ve seen LINQ queries with language syntax in previous sec‐
tions. However, this section takes advantage of another way to use
LINQ via a fluent interface, called method syntax. This is much like
the builder pattern you learned about in Recipe 1.10.

So far, the only thing that has happened is that we’ve dynamically built a LINQ query
and, because of deferred execution, the query hasn’t run yet. Finally, the code calls
ToList on salesPersonQuery, materializing the query. As the return type of this
method indicates, this returns a List<SalesPerson>.

Now, the algorithm has built and executed a dynamic query, protected from SQL
injection attack. This protection comes from the fact that the LINQ provider always
parameterizes user input so it will be treated as parameter data, rather than as part of
the query. As a side benefit, you also have a method with strongly typed code, where
you don’t have to worry about inadvertent and hard-to-find typos.

See Also
Recipe 1.10, “Constructing Objects with Complex Configuration”

4.6 Querying Distinct Objects
Problem
You have a list of objects with duplicates and need to transform that into a distinct list
of unique objects.

Solution
Here’s an object that won’t support distinct queries:

public class SalesPerson
{
 public int ID { get; set; }

 public string Name { get; set; }

 public string Address { get; set; }

 public string City { get; set; }

 public string PostalCode { get; set; }

 public string Region { get; set; }

 public string ProductType { get; set; }
}

116 | Chapter 4: Querying with LINQ

Here’s how to fix that object to support distinct queries:

public class SalesPersonComparer : IEqualityComparer<SalesPerson>
{
 public bool Equals(SalesPerson x, SalesPerson y)
 {
 return x.ID == y.ID;
 }

 public int GetHashCode(SalesPerson obj)
 {
 return obj.GetHashCode();
 }
}

public class SalesPerson
{
 public int ID { get; set; }

 public string Name { get; set; }

 public string Address { get; set; }

 public string City { get; set; }

 public string PostalCode { get; set; }

 public string Region { get; set; }

 public string ProductType { get; set; }
}

Here’s the data source:

public class InMemoryContext
{
 List<SalesPerson> salesPeople =
 new List<SalesPerson>
 {
 new SalesPerson
 {
 ID = 1,
 Address = "123 1st Street",
 City = "First City",
 Name = "First Person",
 PostalCode = "45678",
 Region = "Region #1",
 ProductType = "Type 2"
 },
 new SalesPerson
 {
 ID = 2,
 Address = "234 2nd Street",

4.6 Querying Distinct Objects | 117

 City = "Second City",
 Name = "Second Person",
 PostalCode = "56789",
 Region = "Region #2",
 ProductType = "Type 3"
 },
 new SalesPerson
 {
 ID = 3,
 Address = "345 3rd Street",
 City = "Third City",
 Name = "Third Person",
 PostalCode = "67890",
 Region = "Region #3",
 ProductType = "Type 1"
 },
 new SalesPerson
 {
 ID = 4,
 Address = "678 9th Street",
 City = "Fourth City",
 Name = "Fourth Person",
 PostalCode = "90123",
 Region = "Region #1",
 ProductType = "Type 2"
 },
 new SalesPerson
 {
 ID = 4,
 Address = "678 9th Street",
 City = "Fourth City",
 Name = "Fourth Person",
 PostalCode = "90123",
 Region = "Region #1",
 ProductType = "Type 2"
 },
 };

 public List<SalesPerson> SalesPeople => salesPeople;
}

This code filters by distinct objects:

class Program
{
 static void Main(string[] args)
 {
 var salesPeopleWithoutComparer =
 (from person in new InMemoryContext().SalesPeople
 select person)
 .Distinct()
 .ToList();

118 | Chapter 4: Querying with LINQ

 PrintResults(salesPeopleWithoutComparer, "Without Comparer");

 var salesPeopleWithComparer =
 (from person in new InMemoryContext().SalesPeople
 select person)
 .Distinct(new SalesPersonComparer())
 .ToList();

 PrintResults(salesPeopleWithComparer, "With Comparer");
 }

 static void PrintResults(List<SalesPerson> salesPeople, string title)
 {
 Console.WriteLine($"\n{title}\n");

 salesPeople.ForEach(person =>
 Console.WriteLine($"{person.ID}. {person.Name}"));
 }
}

Discussion
Sometimes you have a list of entities with duplicates, either because of some applica‐
tion processing or the type of database query that results in duplicates. Often, you
need a list of unique objects. For instance, you’re materializing into a Dictionary col‐
lection that doesn’t allow duplicates.

The LINQ Distinct operator helps get a list of unique objects. At first glance, this is
easy, as shown in the first query of the Main method that uses the Distinct() opera‐
tor. Notice that it doesn’t have parameters. However, an inspection of the results
shows that you still have the same duplicates in the data that you started with.

The problem, and subsequent solution, might not be immediately obvious because it
relies on combining a few different C# concepts. First, think about how Distinct
should be able to tell the difference between objects—it has to perform a comparison.
Next, consider that the type of SalesPerson is class. That’s important because classes
are reference types, which have reference equality. When Distinct does a reference
comparison, no two object references are the same because each object has a unique
reference. Finally, you need to write code to compare SalesPerson instances to see if
they’re equal and tell Distinct about that code.

The SalesPerson class is a basic class with properties and doesn’t contain any syntax
to indicate how to perform equality. In contrast, SalesPersonComparer implements
IEqualityComparer<SalesPerson>. The SalesPerson class doesn’t work because it
has reference equality. However the SalesPersonComparer class that implements
IEqualityComparer<SalesPerson> compares properly because it has an Equals

4.6 Querying Distinct Objects | 119

method. In this case, checking ID is sufficient to determine that instances are equal,
assuming that each entity comes from the same data source with unique ID fields.

SalesPersonComparer knows how to compare SalesPerson instances, but that isn’t
the end of the story because there isn’t anything tying it to the query. If you ran the
first query in Main with Distinct() (no parameter), the results will still have dupli‐
cates. The problem is that Distinct doesn’t know how to compare the objects so it
defaults to the instance type, class, which, as explained earlier, is a reference type.

The solution is to use the second query in Main that uses the call to Distinct(new
SalesPersonComparer()) (with parameter). This uses the Distinct operator’s over‐
load with the IEqualityComparer<T> overload parameter. Since SalesPerson

Comparer implements IEqualityComparer<SalesPerson>, this works.

See Also
Recipe 2.5, “Checking for Type Equality”

4.7 Simplifying Queries
Problem
A query has become too complex and you need to make it more readable.

Solution
Here’s the entity to query:

public class SalesPerson
{
 public int ID { get; set; }

 public string Name { get; set; }

 public string Address { get; set; }

 public string City { get; set; }

 public string PostalCode { get; set; }

 public string Region { get; set; }

 public string ProductType { get; set; }

 public string TotalSales { get; set; }
}

This is the data source:

120 | Chapter 4: Querying with LINQ

public class InMemoryContext
{
 List<SalesPerson> salesPeople =
 new List<SalesPerson>
 {
 new SalesPerson
 {
 ID = 1,
 Address = "123 1st Street",
 City = "First City",
 Name = "First Person",
 PostalCode = "45678",
 Region = "Region #1",
 ProductType = "Type 2",
 TotalSales = "654.32"
 },
 new SalesPerson
 {
 ID = 2,
 Address = "234 2nd Street",
 City = "Second City",
 Name = "Second Person",
 PostalCode = "56789",
 Region = "Region #2",
 ProductType = "Type 3",
 TotalSales = "765.43"
 },
 new SalesPerson
 {
 ID = 3,
 Address = "345 3rd Street",
 City = "Third City",
 Name = "Third Person",
 PostalCode = "67890",
 Region = "Region #3",
 ProductType = "Type 1",
 TotalSales = "876.54"
 },
 new SalesPerson
 {
 ID = 4,
 Address = "678 9th Street",
 City = "Fourth City",
 Name = "Fourth Person",
 PostalCode = "90123",
 Region = "Region #1",
 ProductType = "Type 2",
 TotalSales = "987.65"
 },
 new SalesPerson
 {
 ID = 4,

4.7 Simplifying Queries | 121

 Address = "678 9th Street",
 City = "Fourth City",
 Name = "Fourth Person",
 PostalCode = "90123",
 Region = "Region #1",
 ProductType = "Type 2",
 TotalSales = "109.87"
 },
 };

 public List<SalesPerson> SalesPeople => salesPeople;
}

The following shows how to simplify a query projection:

class Program
{
 static void Main(string[] args)
 {
 decimal TotalSales = 0;

 var salesPeopleWithAddresses =
 (from person in new InMemoryContext().SalesPeople
 let FullAddress =
 $"{person.Address}\n" +
 $"{person.City}, {person.PostalCode}"
 let salesOkay =
 decimal.TryParse(person.TotalSales, out TotalSales)
 select new
 {
 person.ID,
 person.Name,
 FullAddress,
 TotalSales
 })
 .ToList();

 Console.WriteLine($"\nSales People and Addresses\n");

 salesPeopleWithAddresses.ForEach(person =>
 Console.WriteLine(
 $"{person.ID}. {person.Name}: {person.TotalSales:C}\n" +
 $"{person.FullAddress}\n"));
 }
}

Discussion
Sometimes LINQ queries get complex. If the code is still hard to read, it’s also hard to
maintain. One option is to go imperative and rewrite the query as a loop. Another is
to use the let clause for simplification.

122 | Chapter 4: Querying with LINQ

In the solution, the Main method has a query with a custom projection into an anony‐
mous type. Sometimes queries are complex because they have subqueries, or other
logic, inside of the projection. For example, look at FullAddress, being built in a let
clause. Without that simplification, the code would have ended up inside the
projection.

Another scenario you might face is when parsing object input from string. The exam‐
ple uses a TryParse in a let clause, which is impossible to put in the projection. This
is a little tricky because the out parameter, TotalSales, is outside of the query. We
ignore the results of TryParse but can now assign TotalSales in the projection.

4.8 Operating on Sets
Problem
You want to combine two sets of objects without duplication.

Solution
Here’s the entity to query:

public class SalesPerson : IEqualityComparer<SalesPerson>
{
 public int ID { get; set; }

 public string Name { get; set; }

 public string Address { get; set; }

 public string City { get; set; }

 public string PostalCode { get; set; }

 public string Region { get; set; }

 public string ProductType { get; set; }

 public bool Equals(SalesPerson x, SalesPerson y)
 {
 return x.ID == y.ID;
 }

 public int GetHashCode(SalesPerson obj)
 {
 return ID.GetHashCode();
 }
}

4.8 Operating on Sets | 123

Here’s the data source:

public class InMemoryContext
{
 List<SalesPerson> salesPeople =
 new List<SalesPerson>
 {
 new SalesPerson
 {
 ID = 1,
 Address = "123 1st Street",
 City = "First City",
 Name = "First Person",
 PostalCode = "45678",
 Region = "Region #1",
 ProductType = "Type 2"
 },
 new SalesPerson
 {
 ID = 2,
 Address = "234 2nd Street",
 City = "Second City",
 Name = "Second Person",
 PostalCode = "56789",
 Region = "Region #2",
 ProductType = "Type 3"
 },
 new SalesPerson
 {
 ID = 3,
 Address = "345 3rd Street",
 City = "Third City",
 Name = "Third Person",
 PostalCode = "67890",
 Region = "Region #3",
 ProductType = "Type 1"
 },
 new SalesPerson
 {
 ID = 4,
 Address = "678 9th Street",
 City = "Fourth City",
 Name = "Fourth Person",
 PostalCode = "90123",
 Region = "Region #1",
 ProductType = "Type 2"
 },
 };

 public List<SalesPerson> SalesPeople => salesPeople;
}

124 | Chapter 4: Querying with LINQ

This code shows how to perform set operations:

class Program
{
 static InMemoryContext ctx = new InMemoryContext();

 static void Main()
 {
 System.Console.WriteLine("\nLINQ Set Operations");

 DoUnion();
 DoExcept();
 DoIntersection();

 System.Console.WriteLine("\nComplete.\n");
 }

 static void DoUnion()
 {
 var dataSource1 =
 (from person in ctx.SalesPeople
 where person.ID < 3
 select person)
 .ToList();

 var dataSource2 =
 (from person in ctx.SalesPeople
 where person.ID > 2
 select person)
 .ToList();

 List<SalesPerson> union =
 dataSource1
 .Union(dataSource2, new SalesPerson())
 .ToList();

 PrintResults(union, "Union Results");
 }

 static void DoExcept()
 {
 var dataSource1 =
 (from person in ctx.SalesPeople
 select person)
 .ToList();

 var dataSource2 =
 (from person in ctx.SalesPeople
 where person.ID == 4
 select person)
 .ToList();

 List<SalesPerson> union =

4.8 Operating on Sets | 125

 dataSource1
 .Except(dataSource2, new SalesPerson())
 .ToList();

 PrintResults(union, "Except Results");
 }

 static void DoIntersection()
 {
 var dataSource1 =
 (from person in ctx.SalesPeople
 where person.ID < 4
 select person)
 .ToList();

 var dataSource2 =
 (from person in ctx.SalesPeople
 where person.ID > 2
 select person)
 .ToList();

 List<SalesPerson> union =
 dataSource1
 .Intersect(dataSource2, new SalesPerson())
 .ToList();

 PrintResults(union, "Intersect Results");
 }

 static void PrintResults(List<SalesPerson> salesPeople, string title)
 {
 Console.WriteLine($"\n{title}\n");

 salesPeople.ForEach(person =>
 Console.WriteLine($"{person.ID}. {person.Name}"));
 }
}

Discussion
In Recipe 4.2, we discussed the concept of joining data from two separate data sour‐
ces. The examples operate in that same spirit and show different manipulations,
based on sets.

The first method, DoUnion, gets two sets of data, intentionally filtering by ID to ensure
overlap. From the reference of the first data source, the code calls the Union operator
with the second data source as the parameter. This results in a set of data from both
data sources, including duplicates.

126 | Chapter 4: Querying with LINQ

The DoExcept method is similar to DoUnion but uses the Except operator. This results
in a set of all the objects in the first data source. However, any objects in the second
data source, even if they were in the first, won’t appear in the results.

Finally, DoIntersect is similar in structure to DoUnion and DoExcept. However, it
queries objects that are only in both data sources. If any object is in one data source,
but not the other, it won’t appear in the result. This operation is called difference in set
theory.

LINQ has many standard operators that, just like the set operators, are very powerful.
Before performing any complex operation in a LINQ query, it’s good practice to
review standard operators to see if something exists that will simplify your task.

See Also
Recipe 4.2, “Joining Data”

Recipe 4.3, “Performing Left Joins”

4.9 Building a Query Filter with Expression Trees
Problem
The LINQ where clause combines via AND conditions, but you need a dynamic where
that works as an OR condition.

Solution
Here’s the entity to query:

public class SalesPerson
{
 public int ID { get; set; }

 public string Name { get; set; }

 public string Address { get; set; }

 public string City { get; set; }

 public string PostalCode { get; set; }

 public string Region { get; set; }

 public string ProductType { get; set; }
}

4.9 Building a Query Filter with Expression Trees | 127

This is the data source:

public class InMemoryContext
{
 List<SalesPerson> salesPeople =
 new List<SalesPerson>
 {
 new SalesPerson
 {
 ID = 1,
 Address = "123 1st Street",
 City = "First City",
 Name = "First Person",
 PostalCode = "45678",
 Region = "Region #1",
 ProductType = "Type 2"
 },
 new SalesPerson
 {
 ID = 2,
 Address = "234 2nd Street",
 City = "Second City",
 Name = "Second Person",
 PostalCode = "56789",
 Region = "Region #2",
 ProductType = "Type 3"
 },
 new SalesPerson
 {
 ID = 3,
 Address = "345 3rd Street",
 City = "Third City",
 Name = "Third Person",
 PostalCode = "67890",
 Region = "Region #3",
 ProductType = "Type 1"
 },
 new SalesPerson
 {
 ID = 4,
 Address = "678 9th Street",
 City = "Fourth City",
 Name = "Fourth Person",
 PostalCode = "90123",
 Region = "Region #1",
 ProductType = "Type 2"
 },
 };

 public List<SalesPerson> SalesPeople => salesPeople;
}

128 | Chapter 4: Querying with LINQ

Here’s an extension method for a filtered OR operation:

public static class CookbookExtensions
{
 public static IEnumerable<TParameter> WhereOr<TParameter>(
 this IEnumerable<TParameter> query,
 Dictionary<string, string> criteria)
 {
 const string ParamName = "person";

 ParameterExpression paramExpr =
 Expression.Parameter(typeof(TParameter), ParamName);

 Expression accumulatorExpr = null;

 foreach (var criterion in criteria)
 {
 MemberExpression paramMbr =
 LambdaExpression.PropertyOrField(
 paramExpr, criterion.Key);

 MemberExpression leftExpr =
 Expression.Property(
 paramExpr,
 typeof(TParameter).GetProperty(criterion.Key));
 Expression rightExpr =
 Expression.Constant(criterion.Value, typeof(string));
 Expression equalExpr =
 Expression.Equal(leftExpr, rightExpr);

 accumulatorExpr = accumulatorExpr == null
 ? equalExpr
 : Expression.Or(accumulatorExpr, equalExpr);
 }

 Expression<Func<TParameter, bool>> allClauses =
 Expression.Lambda<Func<TParameter, bool>>(
 accumulatorExpr, paramExpr);

 Func<TParameter, bool> compiledClause = allClauses.Compile();

 return query.Where(compiledClause);
 }
}

Here’s the code that consumes the new extension method:

class Program
{
 static void Main()
 {
 SalesPerson searchCriteria = GetCriteriaFromUser();

4.9 Building a Query Filter with Expression Trees | 129

 List<SalesPerson> salesPeople = QuerySalesPeople(searchCriteria);

 PrintResults(salesPeople);
 }

 static SalesPerson GetCriteriaFromUser()
 {
 var person = new SalesPerson();

 Console.WriteLine("Sales Person Search");
 Console.WriteLine("(press Enter to skip an entry)\n");

 Console.Write($"{nameof(SalesPerson.Address)}: ");
 person.Address = Console.ReadLine();

 Console.Write($"{nameof(SalesPerson.City)}: ");
 person.City = Console.ReadLine();

 Console.Write($"{nameof(SalesPerson.Name)}: ");
 person.Name = Console.ReadLine();

 Console.Write($"{nameof(SalesPerson.PostalCode)}: ");
 person.PostalCode = Console.ReadLine();

 Console.Write($"{nameof(SalesPerson.ProductType)}: ");
 person.ProductType = Console.ReadLine();

 Console.Write($"{nameof(SalesPerson.Region)}: ");
 person.Region = Console.ReadLine();

 return person;
 }

 static List<SalesPerson> QuerySalesPeople(SalesPerson criteria)
 {
 var ctx = new InMemoryContext();

 var filters = new Dictionary<string, string>();

 IEnumerable<SalesPerson> salesPeopleQuery =
 from people in ctx.SalesPeople
 select people;

 if (!string.IsNullOrWhiteSpace(criteria.Address))
 filters[nameof(criteria.Address)] = criteria.Address;

 if (!string.IsNullOrWhiteSpace(criteria.City))
 filters[nameof(criteria.City)] = criteria.City;

 if (!string.IsNullOrWhiteSpace(criteria.Name))
 filters[nameof(criteria.Name)] = criteria.Name;

130 | Chapter 4: Querying with LINQ

 if (!string.IsNullOrWhiteSpace(criteria.PostalCode))
 filters[nameof(criteria.PostalCode)] = criteria.PostalCode;

 if (!string.IsNullOrWhiteSpace(criteria.ProductType))
 filters[nameof(criteria.ProductType)] = criteria.ProductType;

 if (!string.IsNullOrWhiteSpace(criteria.Region))
 filters[nameof(criteria.Region)] = criteria.Region;

 salesPeopleQuery =
 salesPeopleQuery.WhereOr<SalesPerson>(filters);

 List<SalesPerson> salesPeople = salesPeopleQuery.ToList();

 return salesPeople;
 }

 static void PrintResults(List<SalesPerson> salesPeople)
 {
 Console.WriteLine("\nSales People\n");

 salesPeople.ForEach(person =>
 Console.WriteLine($"{person.ID}. {person.Name}"));
 }
}

Discussion
Recipe 4.5 showed the power of dynamic queries in LINQ. However, that isn’t the end
of what you can do. With expression trees, you can leverage LINQ for any type of
query. If the standard operators don’t provide something you need, you can use
expression trees. This section does just that, showing how to use expression trees to
run a dynamic WhereOr operation.

The motivation for WhereOr comes from the fact that the standard Where operator
combines in an AND comparison. In Recipe 4.5, all of those Where operators had an
implicit AND relationship between them. This means that a given entity must have a
value equal to each of the fields (that the user specified in the criteria) to get a match.
With the WhereOr in this section, all of the fields have an OR relationship, and a match
on only one of the fields is necessary for inclusion in results.

In the solution, the GetCriteriaFromUser method gets the values for each
SalesPerson property. QuerySalesPeople starts a query for deferred execution, as
explained in Recipe 4.5, and builds a Dictionary<string, string> of filters.

The CookbookExtensions class has the WhereOr extension method that accepts the
filters. The high-level description of what WhereOr is trying to accomplish comes

4.9 Building a Query Filter with Expression Trees | 131

from the fact that it needs to return an IEnumerable<SalesPerson> for the caller to
complete a LINQ query.

First, go to the bottom of WhereOr and notice that it returns the query with the Where
operator and has a parameter named compiledQuery. Remember that the LINQ
Where operator takes a C# lambda expression with a parameter and a predicate. We
want a filter that returns an object if any one field of an object matches, based on the
input criteria. Therefore, compiledQuery must evaluate to a lambda of the following
form:

person => person.Field1 == "val1" || ... || person.FieldN == "valN"

That’s a lambda with OR operators for each value in the Dictionary<string,
string> criteria parameter. To get from the top of this algorithm to the bottom, we
need to build an expression tree that evaluates to this form of lambda. Figure 4-1
illustrates what this code does.

Figure 4-1. Building a Where expression with clauses separated by OR operators

Figure 4-1 shows the expression tree that the solution creates. Here, we assume that
the user wants to query four values: City, Name, ProductType, and Region. Expression
trees read depth-first, from left to right, where each box represents a node. Therefore,
LINQ follows the tree down the left side until it finds a leaf node, which is the City
expression. Then it moves back up the tree to find the OR, moves to the right and
finds the Name expression, and builds the OR expression. So far, LINQ has built the
following clause:

City == 'MyCity' || Name == 'Joe'

LINQ continues reading the expression tree up and to the right until it finally builds
the following clause:

132 | Chapter 4: Querying with LINQ

City == 'MyCity' || Name == 'Joe' || ProductType == 'Widgets' || Region == 'West'

Back to the solution code, the first thing WhereOr does is create a ParameterExpres
sion. This is the person parameter in the lambda. It’s the parameter to every compar‐
ison expression because it represents the TParameter, which is an instance of Sales
Person in this example.

This example is called the ParameterExpression person. However,
if this is a generic reusable extension method, you might give it a
more general name, like parameterTerm because TParameter could
be any type. The choice of person in this example is there to clarify
that the ParameterExpression represents a SalesPerson instance
in this example.

The Expression accumulatorExpr, as its name suggests, gathers all of the clauses for
the lambda body.

The foreach statement loops through the Dictionary collection, which returns
KeyValuePair instances, which have Key and Value properties. As shown in the
QuerySalesPeople method, the Key property is the name of the SalesPerson prop‐
erty, and the Value property is what the user entered.

For each clause of the lambda, the left-hand side is a reference to the property on the
SalesPerson instance (e.g., person.Name). To create that, the code instantiates the
paramMbr using the paramExpr (which is person). That becomes a parameter of left
Expr. The rightExpr expression is a constant that holds the value to compare and its
type. Then we need to complete the expression with an Equals expression for the left
and right expressions (leftExpr and rightExpr, respectively).

Finally, we need to OR that expression with any others. The first time through the
foreach loop, accumulatorExpr will be null, so we just assign the first expression.
On subsequent expressions, we use an OR expression to append the new Equals
expression to accumulatorExpr.

After iterating through each input field, we form the final LambdaExpression that
adds the parameter that was used in the left side of each Equals expression. Notice
that the result is an Expression<Func<TParameter, bool>>, which has a parameter
type matching the lambda delegate type for the original query, which is Func<Sales
Person, bool>.

We now have a dynamically built expression tree ready to convert into runnable code,
which is a task for the Expression.Compile method. This gives us a compiled lambda
that we can pass to the Where clause.

4.9 Building a Query Filter with Expression Trees | 133

The calling code receives the IEnumerable<SalesPerson> from the WhereOr method
and materializes the query with a call to ToList. This produces a list of SalesPerson
objects that match at least one of the user’s specified criteria.

See Also
Recipe 4.5, “Building Incremental Queries”

4.10 Querying in Parallel
Problem
You want to improve performance, and your query could benefit from
multithreading.

Solution
Here’s the entity to query:

public class SalesPerson
{
 public int ID { get; set; }

 public string Name { get; set; }

 public string Address { get; set; }

 public string City { get; set; }

 public string PostalCode { get; set; }

 public string Region { get; set; }

 public string ProductType { get; set; }
}

This is the data source:

public class InMemoryContext
{
 List<SalesPerson> salesPeople =
 new List<SalesPerson>
 {
 new SalesPerson
 {
 ID = 1,
 Address = "123 1st Street",
 City = "First City",
 Name = "First Person",
 PostalCode = "45678",

134 | Chapter 4: Querying with LINQ

 Region = "Region #1",
 ProductType = "Type 2"
 },
 new SalesPerson
 {
 ID = 2,
 Address = "234 2nd Street",
 City = "Second City",
 Name = "Second Person",
 PostalCode = "56789",
 Region = "Region #2",
 ProductType = "Type 3"
 },
 new SalesPerson
 {
 ID = 3,
 Address = "345 3rd Street",
 City = "Third City",
 Name = "Third Person",
 PostalCode = "67890",
 Region = "Region #3",
 ProductType = "Type 1"
 },
 new SalesPerson
 {
 ID = 4,
 Address = "678 9th Street",
 City = "Fourth City",
 Name = "Fourth Person",
 PostalCode = "90123",
 Region = "Region #1",
 ProductType = "Type 2"
 },
 new SalesPerson
 {
 ID = 5,
 Address = "678 9th Street",
 City = "Fifth City",
 Name = "Fifth Person",
 PostalCode = "90123",
 Region = "Region #1",
 ProductType = "Type 2"
 },
 };

 public List<SalesPerson> SalesPeople => salesPeople;
}

4.10 Querying in Parallel | 135

This code shows how to perform a parallel query:

class Program
{
 static void Main()
 {
 List<SalesPerson> salesPeople = new InMemoryContext().SalesPeople;
 var result =
 (from person in salesPeople.AsParallel()
 select ProcessPerson(person))
 .ToList();
 }

 static SalesPerson ProcessPerson(SalesPerson person)
 {
 Console.WriteLine(
 $"Starting sales person " +
 $"#{person.ID}. {person.Name}");

 // complex in-memory processing
 Thread.Sleep(500);

 Console.WriteLine(
 $"Completed sales person " +
 $"#{person.ID}. {person.Name}");

 return person;
 }
}

Discussion
This section considers queries that can benefit from concurrency. Imagine you have a
LINQ to Objects query, where the data is in memory. Perhaps work on each instance
requires intensive processing, the code runs on a multithreaded/multicore CPU,
and/or takes a nontrivial amount of time. Running the query in parallel might be an
option.

The Main method performs a query, similar to any other query, except for the
AsParallel operator on the data source. What this does is let LINQ figure out how to
split up the work and operate on each range variable in parallel. Figure 4-2 illustrates
what this query is doing.

136 | Chapter 4: Querying with LINQ

Figure 4-2. PLINQ runs members of a collection in parallel

Figure 4-2 shows the salesPeople collection on the left. When the query runs, it
takes multiple collection objects to process in parallel, indicated by the split arrows
from salesPeople pointing to each instance of SalesPerson. After processing, the
query combines the responses from processing each object into a new collection,
named result.

This example uses a LINQ technology known as Parallel LINQ
(PLINQ). Behind the scenes, PLINQ evaluates the query for vari‐
ous runtime optimizations such as degree of parallelism. It’s even
smart enough to figure out when running synchronously is faster
than the overhead of starting new threads on a given machine.

This example also demonstrates another type of projection that uses a method to
return an object. The assumption here is that the intensive processing occurs in
ProcessPerson, which has a Thread.Sleep to simulate nontrivial processing.

In practice, you would want to do some testing to see if you’re really benefiting from
parallelism. Recipe 3.10 shows how to measure performance with the System.Diag
nostics.StopWatch class. If successful, this could be an easy way to boost the perfor‐
mance of your application.

See Also
Recipe 3.10, “Measuring Performance”

4.10 Querying in Parallel | 137

CHAPTER 5

Implementing Dynamic and Reflection

Reflection allows code to look inside of a type and examine its details and members.
This is useful for libraries and tools that want to give the user maximum flexibility to
submit objects to perform some automatic operation. A common example of code
that does reflection are unit testing frameworks. As described in Recipe 3.1, unit tests
take classes whose members have attributes to indicate which methods are tests. The
unit testing framework uses reflection to find classes that are tests, locate the test
methods, and execute the tests.

The example in this chapter is based on a dynamic report-building application. It uses
reflection to read attributes of a class, access type members, and execute methods.
The first four sections of this chapter show how to do that.

In addition to reflection, another way to work flexibly with code is a C# feature called
dynamic. In C#, much of the code we write is strongly typed, and that’s a huge benefit
for productivity and maintainability. That said, C# has a dynamic keyword that allows
developers to assume that objects have a certain structure. This is much like dynamic
programming languages, like JavaScript and Python, where developers access objects
based on documentation that specifies what members an object has. So, they just
write code that uses those members. Dynamic code allows C# to do the same thing.

When performing operations requiring COM interop, dynamic is particularly useful,
and there’s a section explaining how that works. You’ll see how dynamic can be useful
in significantly reducing and simplifying the code, as compared to the verbosity and
complexity of reflection. There are also types that allow us to build an inherently
dynamic type. Additionally, there’s a dynamic language runtime (DLR) that enables
interop between C# and dynamic languages, such as Python, and you’ll see two sec‐
tions on interoperability between C# and Python.

139

5.1 Reading Attributes with Reflection
Problem
You want consumers of your library to have maximum flexibility when passing
objects, but they still need to communicate important details of the object.

Solution
Here’s an Attribute class, representing report column metadata:

[AttributeUsage(
 AttributeTargets.Property | AttributeTargets.Method,
 AllowMultiple = false)]
public class ColumnAttribute : Attribute
{
 public ColumnAttribute(string name)
 {
 Name = name;
 }

 public string Name { get; set; }

 public string Format { get; set; }
}

This class represents a record to display and uses the attribute:

public class InventoryItem
{
 [Column("Part #")]
 public string PartNumber { get; set; }

 [Column("Name")]
 public string Description { get; set; }

 [Column("Amount")]
 public int Count { get; set; }

 [Column("Price")]
 public decimal ItemPrice { get; set; }

 [Column("Total")]
 public decimal CalculateTotal()
 {
 return ItemPrice * Count;
 }
}

The Main method shows how to instantiate and pass the data:

140 | Chapter 5: Implementing Dynamic and Reflection

static void Main()
{
 var inventory = new List<object>
 {
 new InventoryItem
 {
 PartNumber = "1",
 Description = "Part #1",
 Count = 3,
 ItemPrice = 5.26m
 },
 new InventoryItem
 {
 PartNumber = "2",
 Description = "Part #2",
 Count = 1,
 ItemPrice = 7.95m
 },
 new InventoryItem
 {
 PartNumber = "3",
 Description = "Part #3",
 Count = 2,
 ItemPrice = 23.13m
 },
 };

 string report = new Report().Generate(inventory);

 Console.WriteLine(report);
}

This Report class has methods for building a report header and generating a report:

public class Report
{
 // contains Generate and GetHeaders methods
}

This method is a member of the Report class and uses reflection to find all type
members:

public string Generate(List<object> items)
{
 _ = items ??
 throw new ArgumentNullException(
 $"{nameof(items)} is required");

 MemberInfo[] members =
 items.First().GetType().GetMembers();

 var report = new StringBuilder("# Report\n\n");

5.1 Reading Attributes with Reflection | 141

 report.Append(GetHeaders(members));

 return report.ToString();
}

This method is a member of the Report class and uses reflection to read attributes of
a type:

const string ColumnSeparator = " | ";

StringBuilder GetHeaders(MemberInfo[] members)
{
 var columnNames = new List<string>();
 var underscores = new List<string>();

 foreach (var member in members)
 {
 var attribute =
 member.GetCustomAttribute<ColumnAttribute>();

 if (attribute != null)
 {
 string columnTitle = attribute.Name;
 string dashes = "".PadLeft(columnTitle.Length, '-');

 columnNames.Add(columnTitle);
 underscores.Add(dashes);
 }
 }

 var header = new StringBuilder();

 header.AppendJoin(ColumnSeparator, columnNames);
 header.Append("\n");

 header.AppendJoin(ColumnSeparator, underscores);
 header.Append("\n");

 return header;
}

And here’s the output:

Report

Total	Part #	Name	Amount	Price

Discussion
Attributes, which are metadata, typically exist to support tooling on code. The solu‐
tion in this section takes a similar approach where the ColumnAttribute is metadata

142 | Chapter 5: Implementing Dynamic and Reflection

for a column of data in a report. You can see where the AttributeUsage specifies that
you can apply ColumnAttribute to either properties or methods. Thinking of which
features that a report column might be able to support, this attribute boils down to
two typical features: Name and Format. Because a C# property name might not repre‐
sent the text of a column header, Name lets you specify anything you want. Also,
without specifying a string format, DateTime and decimal columns would take
default displays, which is often not what you want. This essentially solves the problem
where a consumer of a report library wants to pass any type of object they want, using
ColumnAttribute to share important details.

InventoryItem shows how ColumnAttribute works. Notice how the positional prop‐
erty, Name, differs from the name of the properties and method. Recipe 5.2 has an
example of how the Format property works, while this section only concentrates on
how to extract and display the metadata as a Markdown formatted column.

Architecturally, you should look at this project as two separate
applications. There’s a reusable report library that anyone can sub‐
mit objects to. The report library consists of a Report class and the
ColumnAttribute attribute. Then there’s a consumer application,
which is the Main method. For simplicity, the source code for this
demo puts all the code into the same project, but in practice, these
would be separate.

The Main method instantiates a List<object> that contains InventoryItem instan‐
ces. This is data that would typically come from a database or other data source. It
instantiates the Report, passes the data, and prints the result.

The Generate method belongs to the Report class. Notice that it accepts a
List<object>, which is why Main passed a List<object>. Essentially, Report wants
to be able to operate on any object type.

After validating input items, Generate uses reflection to discover what members exist
in the objects passed. You see, we’re no longer able to know because the objects aren’t
strongly typed, and we want maximum flexibility in what types can be passed. This is
a good case for reflection. That said, we no longer have the guarantee that all instan‐
ces in items are the same type, and that has to be an implied contract, rather than
enforced by code. Recipe 5.3 fixes this by showing how to use generics so we have
both type safety and the ability to use generics, and using interfaces might be another
approach.

We’re assuming all objects are the same, and Generate calls First on items, because
it has the exact same attributes of all objects in items. Generate then calls GetType on
the first item. The Type instance is the gateway for performing reflection.

5.1 Reading Attributes with Reflection | 143

After getting the Type instance, you can ask for anything about a type and work with
particular instances. This example calls GetMembers to get a MemberInfo[]. A Member
Info has all the information about a particular type member, like its name and type.
In this example, the MemberInfo[] contains the properties and methods from the
InventoryItem that Main passed in: PartNumber, Description, Count, ItemPrice,
and CalculateTotal.

Because the report is a string of Markdown text and there is a lot of concatenation,
the solution uses StringBuilder. Recipe 2.1 explains why this is a good approach.

Because we’re concerned with attributes, this solution only prints the report header,
and later sections in this chapter explain a lot of different ways to generate the report
body, depending on your needs. The GetHeader method takes the MemberInfo[] and
uses reflection to learn what those header titles should be.

In Markdown, we separate table headers with pipes, |, and add an underscore, which
is why we have two arrays for columnNames and underscores. The foreach loop
examines each MemberInfo, calling GetCustomAttribute. Notice that the type param‐
eter for GetCustomAttribute is ColumnAttribute—members could have multiple
attributes, but we only want that one. The instance returned from GetCustom
Attribute is ColumnAttribute, so we have access to its properties, such as Name. The
code populates columnNames with Name and adds an underscore that is the same
length as Name.

Finally, GetHeaders concatenates values with pipes, |, and returns the resulting
header. Following this back through the call chain, Generate appends the GetHeaders
results and Main prints the header, which you can see in the solution output.

See Also
Recipe 2.1, “Processing Strings Efficiently”

Recipe 5.2, “Accessing Type Members with Reflection”

5.2 Accessing Type Members with Reflection
Problem
You need to examine an object to see what properties you can read.

Solution
This class represents a record to display:

public class InventoryItem
{

144 | Chapter 5: Implementing Dynamic and Reflection

 [Column("Part #")]
 public string PartNumber { get; set; }

 [Column("Name")]
 public string Description { get; set; }

 [Column("Amount")]
 public int Count { get; set; }

 [Column("Price", Format = "{0:c}")]
 public decimal ItemPrice { get; set; }
}

Here’s a class that contains metadata for each report column:

public class ColumnDetail
{
 public string Name { get; set; }

 public ColumnAttribute Attribute { get; set; }

 public PropertyInfo PropertyInfo { get; set; }
}

This method collects the data to populate column metadata:

Dictionary<string, ColumnDetail> GetColumnDetails(
 List<object> items)
{
 object itemInstance = items.First();
 Type itemType = itemInstance.GetType();
 PropertyInfo[] itemProperties = itemType.GetProperties();

 return
 (from prop in itemProperties
 let attribute = prop.GetCustomAttribute<ColumnAttribute>()
 where attribute != null
 select new ColumnDetail
 {
 Name = prop.Name,
 Attribute = attribute,
 PropertyInfo = prop
 })
 .ToDictionary(
 key => key.Name,
 val => val);
}

Here’s a more streamlined way to get header data with LINQ:

StringBuilder GetHeaders(
 Dictionary<string, ColumnDetail> details)
{
 var header = new StringBuilder();

5.2 Accessing Type Members with Reflection | 145

 header.AppendJoin(
 ColumnSeparator,
 from detail in details.Values
 select detail.Attribute.Name);

 header.Append("\n");

 header.AppendJoin(
 ColumnSeparator,
 from detail in details.Values
 let length = detail.Attribute.Name.Length
 select "".PadLeft(length, '-'));

 header.Append("\n");

 return header;
}

This method uses reflection to pull the value out of an object property:

(object, Type) GetReflectedResult(
 object item, PropertyInfo property)
{
 object result = property.GetValue(item);
 Type type = property.PropertyType;

 return (result, type);
}

This method uses reflection to retrieve and format property data:

List<string> GetColumns(
 IEnumerable<ColumnDetail> details,
 object item)
{
 var columns = new List<string>();

 foreach (var detail in details)
 {
 PropertyInfo member = detail.PropertyInfo;
 string format =
 string.IsNullOrWhiteSpace(
 detail.Attribute.Format) ?
 "{0}" :
 detail.Attribute.Format;

 (object result, Type columnType) =
 GetReflectedResult(item, member);

 switch (columnType.FullName)
 {
 case "System.Decimal":
 columns.Add(

146 | Chapter 5: Implementing Dynamic and Reflection

 string.Format(format, (decimal)result));
 break;
 case "System.Int32":
 columns.Add(
 string.Format(format, (int)result));
 break;
 case "System.String":
 columns.Add(
 string.Format(format, (string)result));
 break;
 default:
 break;
 }
 }

 return columns;
}

This method combines and formats all rows of data:

StringBuilder GetRows(
 List<object> items,
 Dictionary<string, ColumnDetail> details)
{
 var rows = new StringBuilder();

 foreach (var item in items)
 {
 List<string> columns =
 GetColumns(details.Values, item);

 rows.AppendJoin(ColumnSeparator, columns);

 rows.Append("\n");
 }

 return rows;
}

Finally, this method uses all of the others to build a complete report:

const string ColumnSeparator = " | ";

public string Generate(List<object> items)
{
 var report = new StringBuilder("# Report\n\n");

 Dictionary<string, ColumnDetail> columnDetails =
 GetColumnDetails(items);
 report.Append(GetHeaders(columnDetails));
 report.Append(GetRows(items, columnDetails));

 return report.ToString();
}

5.2 Accessing Type Members with Reflection | 147

And here’s the output:

	Total	Part #	Name	Amount	Price	
$15.78	1	Part #1	3	5.26		
$7.95	2	Part #2	1	7.95		
$46.26	3	Part #3	2	23.13		

Discussion
The report library in the solution receives a List<object> so that consumers can
send objects of any type they want. Since the input objects aren’t strongly typed, the
Report class needs to perform reflection to extract data from each object. Recipe 5.1
explained how the Main method passes this data and how the solution generates the
header. This section concentrates on data, and the solution doesn’t repeat the exact
code from Recipe 5.1.

The InventoryItem class uses ColumnAttribute attributes. Notice that ItemPrice
now has the named property Format, specifying that this column should be formatted
in the report as currency.

During reflection, we need to extract a set of data from the objects that helps with
report layout and formatting. The ColumnDetail helps with this because when pro‐
cessing each column, we need to know:

• Name to ensure we’re working on the right column
• Attribute for formatting column data
• PropertyInfo for getting property data

The GetColumnDetails method populates a ColumnDetail for each column. Getting
the first object in the data, it gets the type and then calls GetProperties on the types
for a PropertyInfo[]. Unlike Recipe 5.1, which calls GetMembers for a MemberInfo[],
this only gets the properties from the type and not any other members.

In addition to GetMembers and GetProperties, Type has other
reflection methods that will only get constructors, fields, or meth‐
ods. These would be useful if you need to restrict the type of mem‐
ber you’re working with.

Because reflection returns a collection of objects (PropertyInfo[] in this solution),
we can use LINQ to Objects for a more declarative approach. This is what GetColumn
Details does, projecting into ColumnDetails instances and returning a Dictionary
with the column name as key and ColumnDetail as value.

148 | Chapter 5: Implementing Dynamic and Reflection

As you’ll see later in the solution, the code iterates through the Dic
tionary<string, ColumnDetail>, assuming that columns and
their data are laid out in the order returned by reflection queries.
However, imagine a future implementation where ColumnAttri
bute had an Order property or the consumer could pass include/
exclude column metadata that didn’t guarantee that the order of
the columns matches what reflection returned. In that case, having
the dictionary is essential to look up ColumnDetail metadata based
on which column you’re working on. Although that’s left out of this
example to reduce complexity and focus on the original problem
statement, it might give you ideas on how something like this could
be extended.

The GetHeaders method does exactly the same thing as Recipe 5.1, except it’s written
as LINQ statements to reduce and simplify the code.

The GetReflectedResult returns a tuple, (object, Type). Its task is to pull out the
value from the property and the type of the property from its PropertyInfo. Here,
item is the actual object instance and property is the reflected metadata for that
property. Using property, the code calls GetValue with item as the parameter—it
reads that property from item. Again, we’re using reflection and don’t know the type
for the property, so we put it in type object. PropertyInfo also has a PropertyType,
which is where we get the Type object from.

This application uses reflection to put property data into a variable
of type object. If the property type is a value type (e.g., int,
double, decimal), you incur a boxing penalty, which affects appli‐
cation performance. If you were doing this millions of times, you
might need to take a second look at your requirements and analyze
whether this was a good approach for your scenario. That said, this
is a report. Think about how many records you might include in a
report for the purpose of displaying the data to a human. In this
case, any performance issues would be negligible. It’s a classic
trade-off of flexibility versus performance; you just need to think
about how it affects your situation.

The GetColumns method uses GetReflectedResult as it loops through each column
for a given object. The collection of ColumnDetail is useful, providing PropertyInfo
for the current column. The format defaults to no format if the ColumnAttribute for
a column doesn’t include the Format property. The switch statement applies the for‐
mat to the object based on the Type returned from GetReflectedResult.

5.2 Accessing Type Members with Reflection | 149

For simplicity, the switch statement in GetColumns only contains
types in the solution, though you might imagine it including all
built-in types. We might have used reflection to invoke ToString
with a format specifier and type, which we’ll discuss in Recipe 5.4,
to reduce code. However, at some point the additional complexity
doesn’t add value. In this case, we’re just covering a finite set of
built-in types, and once that code is written, it will be unlikely to
change. My thoughts on this trade-off are that sometimes being too
clever results in code that’s difficult to read and takes longer to
write.

Finally, GetRows calls GetColumns for each row and returns to Generate. Then, hav‐
ing called GetHeaders and GetRows, Generate appends the results to a String
Builder and returns the string to the caller with the entire report, which you can see
in the solution output.

See Also
Recipe 5.1, “Reading Attributes with Reflection”

Recipe 5.4, “Invoking Methods with Reflection”

5.3 Instantiating Type Members with Reflection
Problem
You need to instantiate generic types but don’t know the type or type parameters
ahead of time.

Solution
The solution generates a uniquely formatted report, depending on this enum:

public enum ReportType
{
 Html,
 Markdown
}

Here’s a reusable base class for generating reports:

public abstract class GeneratorBase<TData>
{
 public string Generate(List<TData> items)
 {
 StringBuilder report = GetTitle();

 Dictionary<string, ColumnDetail> columnDetails =

150 | Chapter 5: Implementing Dynamic and Reflection

 GetColumnDetails(items);
 report.Append(GetHeaders(columnDetails));
 report.Append(GetRows(items, columnDetails));

 return report.ToString();
 }

 protected abstract StringBuilder GetTitle();

 protected abstract StringBuilder GetHeaders(
 Dictionary<string, ColumnDetail> details);

 protected abstract StringBuilder GetRows(
 List<TData> items,
 Dictionary<string, ColumnDetail> details);

 Dictionary<string, ColumnDetail> GetColumnDetails(
 List<TData> items)
 {
 TData itemInstance = items.First();
 Type itemType = itemInstance.GetType();
 PropertyInfo[] itemProperties = itemType.GetProperties();

 return
 (from prop in itemProperties
 let attribute = prop.GetCustomAttribute<ColumnAttribute>()
 where attribute != null
 select new ColumnDetail
 {
 Name = prop.Name,
 Attribute = attribute,
 PropertyInfo = prop
 })
 .ToDictionary(
 key => key.Name,
 val => val);
 }

 protected List<string> GetColumns(
 IEnumerable<ColumnDetail> details,
 TData item)
 {
 var columns = new List<string>();

 foreach (var detail in details)
 {
 PropertyInfo member = detail.PropertyInfo;
 string format =
 string.IsNullOrWhiteSpace(
 detail.Attribute.Format) ?
 "{0}" :
 detail.Attribute.Format;

5.3 Instantiating Type Members with Reflection | 151

 (object result, Type columnType) =
 GetReflectedResult(item, member);

 switch (columnType.Name)
 {
 case "Decimal":
 columns.Add(
 string.Format(format, (decimal)result));
 break;
 case "Int32":
 columns.Add(
 string.Format(format, (int)result));
 break;
 case "String":
 columns.Add(
 string.Format(format, (string)result));
 break;
 default:
 break;
 }
 }

 return columns;
 }

 (object, Type) GetReflectedResult(TData item, PropertyInfo property)
 {
 object result = property.GetValue(item);
 Type type = property.PropertyType;

 return (result, type);
 }
}

This class uses that base class to generate Markdown reports:

public class MarkdownGenerator<TData> : GeneratorBase<TData>
{
 const string ColumnSeparator = " | ";

 protected override StringBuilder GetTitle()
 {
 return new StringBuilder("# Report\n\n");
 }

 protected override StringBuilder GetHeaders(
 Dictionary<string, ColumnDetail> details)
 {
 var header = new StringBuilder();

 header.AppendJoin(
 ColumnSeparator,

152 | Chapter 5: Implementing Dynamic and Reflection

 from detail in details.Values
 select detail.Attribute.Name);

 header.Append("\n");

 header.AppendJoin(
 ColumnSeparator,
 from detail in details.Values
 let length = detail.Attribute.Name.Length
 select "".PadLeft(length, '-'));

 header.Append("\n");

 return header;
 }

 protected override StringBuilder GetRows(
 List<TData> items,
 Dictionary<string, ColumnDetail> details)
 {
 var rows = new StringBuilder();

 foreach (var item in items)
 {
 List<string> columns =
 GetColumns(details.Values, item);

 rows.AppendJoin(ColumnSeparator, columns);

 rows.Append("\n");
 }

 return rows;
 }
}

And this class uses that base class to generate HTML reports:

public class HtmlGenerator<TData> : GeneratorBase<TData>
{
 protected override StringBuilder GetTitle()
 {
 return new StringBuilder("<h1>Report</h1>\n");
 }

 protected override StringBuilder GetHeaders(
 Dictionary<string, ColumnDetail> details)
 {
 var header = new StringBuilder("<tr>\n");

 header.AppendJoin(
 "\n",
 from detail in details.Values

5.3 Instantiating Type Members with Reflection | 153

 let columnName = detail.Attribute.Name
 select $" <th>{columnName}</th>");

 header.Append("\n</tr>\n");

 return header;
 }

 protected override StringBuilder GetRows(
 List<TData> items,
 Dictionary<string, ColumnDetail> details)
 {
 StringBuilder rows = new StringBuilder();
 Type itemType = items.First().GetType();

 foreach (var item in items)
 {
 rows.Append("<tr>\n");

 List<string> columns =
 GetColumns(details.Values, item);

 rows.AppendJoin(
 "\n",
 from columnValue in columns
 select $" <td>{columnValue}</td>");

 rows.Append("\n</tr>\n");
 }

 return rows;
 }
}

This method, from the Report class, manages the report-generation process:

public string Generate(List<TData> items, ReportType reportType)
{
 GeneratorBase<TData> generator = CreateGenerator(reportType);

 string report = generator.Generate(items);

 return report;
}

Here’s a method, from the Report class, that uses an enum to figure out which report
format to generate:

GeneratorBase<TData> CreateGenerator(ReportType reportType)
{
 Type generatorType;

 switch (reportType)

154 | Chapter 5: Implementing Dynamic and Reflection

 {
 case ReportType.Html:
 generatorType = typeof(HtmlGenerator<>);
 break;
 case ReportType.Markdown:
 generatorType = typeof(MarkdownGenerator<>);
 break;
 default:
 throw new ArgumentException(
 $"Unexpected ReportType: '{reportType}'");
 }

 Type dataType = typeof(TData);
 Type genericType = generatorType.MakeGenericType(dataType);

 object generator = Activator.CreateInstance(genericType);

 return (GeneratorBase<TData>)generator;
}

Here’s another way, via convention, to figure out which report format to generate:

GeneratorBase<TData> CreateGenerator(ReportType reportType)
{
 Type dataType = typeof(TData);

 string generatorNamespace = "Section_05_03.";
 string generatorTypeName = $"{reportType}Generator`1";
 string typeParameterName = $"[[{dataType.FullName}]]";

 string fullyQualifiedTypeName =
 generatorNamespace +
 generatorTypeName +
 typeParameterName;

 Type generatorType = Type.GetType(fullyQualifiedTypeName);

 object generator = Activator.CreateInstance(generatorType);

 return (GeneratorBase<TData>)generator;
}

The Main method passes data and specifies which report format it wants:

static void Main()
{
 var inventory = new List<InventoryItem>
 {
 new InventoryItem
 {
 PartNumber = "1",
 Description = "Part #1",
 Count = 3,

5.3 Instantiating Type Members with Reflection | 155

 ItemPrice = 5.26m
 },
 new InventoryItem
 {
 PartNumber = "2",
 Description = "Part #2",
 Count = 1,
 ItemPrice = 7.95m
 },
 new InventoryItem
 {
 PartNumber = "3",
 Description = "Part #3",
 Count = 2,
 ItemPrice = 23.13m
 },
 };

 string report =
 new Report<InventoryItem>()
 .Generate(inventory, ReportType.Markdown);

 Console.WriteLine(report);
}

And here’s the output:

Report

Part #	Name	Amount	Price
1 | Part #1 | 3 | $5.26
2 | Part #2 | 1 | $7.95
3 | Part #3 | 2 | $23.13

Discussion
Recipe 5.2 created reports based on a generic object type, and this caused us to lose
the type safety we are accustomed to. This section fixes that problem by using gener‐
ics and showing how to use reflection to instantiate objects with a generic type
parameter.

The concept of the previous sections was to generate a report in Markdown format.
However, a report generator could be much more useful if it had the ability to gener‐
ate reports in any format of your choosing. This example refactors the example in
Recipe 5.2 to offer both a Markdown and an HTML output report.

The ReportType enum specifies the type of report output to generate: Html or Mark
down. Because we can generate multiple formats, we need separate classes for each

156 | Chapter 5: Implementing Dynamic and Reflection

format: HtmlGenerator and MarkdownGenerator. Further, we don’t want to duplicate
code, so each format generation class derives from GeneratorBase.

Notice that GeneratorBase is an abstract class (you can’t instantiate it), with both
abstract and implemented methods. The implemented methods in GeneratorBase
have code that is independent of output formatted and that all derived generator
classes will use: GetColumns, GetColumnDetails, and GetReflectedResult. By defi‐
nition, the derived generator classes must override the abstract methods, which are
format specific: GetTitle, GetHeaders, GetRows. Looking at HtmlGenerator and Mark
downGenerator, you can see the override implementations for these abstract
methods.

Now, let’s put this all together so it makes sense. When the program starts, the first
method called on the Report instance is Generate, in GeneratorBase. Notice how
Generate calls the sequence: GetTitle, GetColumnDetails, GetHeaders, and then
GetRows. This is essentially the same sequence as described in Recipe 5.2. You can
imagine a report being generated top to bottom by writing the title, getting metadata
for the rest of the report, writing the header, and then writing each of the rows of the
report. To get code reuse and create an extensible framework for adding report for‐
mats in the future, we have a general abstract base class, GeneratorBase, and derived
classes that understand the format. Using MarkdownGenerator as an example, here’s
the sequence:

1. External code calls GeneratorBase.Generate.
2. Generator.Generate calls MarkdownGenerator.GetTitle.
3. Generator.Generate calls Generator.GetColumnDetails.
4. Generator.Generate calls MarkdownGenerator.GetHeader.
5. Generator.Generate calls MarkdownGenerator.GetRows.
6. MarkdownGenerator.GetRows calls Generator.GetColumns.
7. Generator.GetColumns calls Generator.GetReflectedResult.
8. MarkdownGenerator.GetRows completes, returning to Generator.Generate.
9. Generator.Generate returns the report to calling code.

The HtmlGenerator works exactly the same way, and so would any future report for‐
mat. In fact, Recipe 5.6 extends this example by adding a third format to support cre‐
ating an Excel report.

5.3 Instantiating Type Members with Reflection | 157

The solution uses a pattern known as the template pattern. In this
pattern, a base class implements common logic and delegates
implementation-specific work to derived classes. This is the object-
oriented principle of polymorphism at work.
The fact that we can extend this framework without needing to re-
write boilerplate logic makes this a viable approach. Recipe 5.6
shows how that works.

The GenerateBase class is intentionally abstract because the only way for this to
work is via an instance of a derived class. The Report.Generate method calls Genera
torBase.Generate. Before doing so, it must figure out which specific GeneratorBase
derived class to instantiate via CreateGenerator, of which there are two examples.

The first example of CreateGenerator examines the ReportType enum to see which
type of report to generate via a switch statement. As explained in earlier sections, you
need a Type object to perform reflection, which the typeof operator does. Notice that
we’re passing a generic type with the <> suffix, without the generic type. After that, we
use the typeof operator to get the type of the type parameter passed to the Report
class, TData. Now we have a type for both the generic type and its type parameter.
Next, we need to bring the generic type and its parameter type together to get a fully
constructed type, (e.g., HtmlGenerator<TData> for Html). Once you have a fully con‐
structed type, you can use the Activator class to call CreateInstance, which instan‐
tiates the type. With a new instance of the GeneratorBase-derived type, CreateGener
ate returns to ReportGenerate, which calls Generate on the new instance. As you
learned earlier, GeneratorBase implements Generate for all derived instances.

That is one way to use reflection to instantiate a generic type, as specified by the prob‐
lem statement. One thing to consider, though, is whether you want to add more for‐
mats to support in the future. You’ll have to go back into the Report class and change
the switch statement, which is a configuration by code change. What if you prefer to
write the Report class one time and never touch it again? Further, what if you prefer‐
red a design by the principles of convention-over-configuration? A good example of
convention over configuration in .NET is ASP.NET MVC. A couple of ASP.NET
MVC conventions are that controllers go in a Controllers folder and views go in a
Views folder. Another is that the controller name is the URL path with a Controller
suffix to its name. Things just work because that’s the convention. The second exam‐
ple of CreateGenerator uses the convention-over-configuration approach.

Notice that the second implementation of CreateGenerator builds a fully qualified
type name with namespace and typename (e.g., Section_05_03.HtmlGenerator for
Html). Also notice that the ReportType enum members match the class names exactly.
This means that anytime in the future, you can create a new format, derived from

158 | Chapter 5: Implementing Dynamic and Reflection

GeneratorBase, and add the prefix to ReportType with Generator as the suffix and it
will work. No need to ever touch the Report class again, unless adding a new feature.

After getting type objects, both CreateGenerator examples call Activator.Create
Instance to return a new instance to Report.Generate.

Finally, looking at the Main method, all a user of this report library needs to do is pass
in the data and the ReportType they want to generate.

See Also
Recipe 5.2, “Accessing Type Members with Reflection”

Recipe 5.6, “Performing Interop with Office Apps”

5.4 Invoking Methods with Reflection
Problem
An object you’ve received has methods that you need to invoke.

Solution
The column metadata class has a MemberInfo property:

public class ColumnDetail
{
 public string Name { get; set; }

 public ColumnAttribute Attribute { get; set; }

 public MemberInfo MemberInfo { get; set; }
}

This class, to be reflected upon, has properties and a method:

public class InventoryItem
{
 [Column("Part #")]
 public string PartNumber { get; set; }

 [Column("Name")]
 public string Description { get; set; }

 [Column("Amount")]
 public int Count { get; set; }

 [Column("Price", Format = "{0:c}")]
 public decimal ItemPrice { get; set; }

5.4 Invoking Methods with Reflection | 159

 [Column("Total", Format = "{0:c}")]
 public decimal CalculateTotal()
 {
 return ItemPrice * Count;
 }
}

This method calls GetMembers to work with MemberInfo instances:

Dictionary<string, ColumnDetail> GetColumnDetails(
 List<object> items)
{
 return
 (from member in
 items.First().GetType().GetMembers()
 let attribute =
 member.GetCustomAttribute<ColumnAttribute>()
 where attribute != null
 select new ColumnDetail
 {
 Name = member.Name,
 Attribute = attribute,
 MemberInfo = member
 })
 .ToDictionary(
 key => key.Name,
 val => val);
}

This method uses the MemberInfo type to determine how to retrieve a value:

(object, Type) GetReflectedResult(
 Type itemType, object item, MemberInfo member)
{
 object result;
 Type type;

 switch (member.MemberType)
 {
 case MemberTypes.Method:
 MethodInfo method =
 itemType.GetMethod(member.Name);
 result = method.Invoke(item, null);
 type = method.ReturnType;
 break;
 case MemberTypes.Property:
 PropertyInfo property =
 itemType.GetProperty(member.Name);
 result = property.GetValue(item);
 type = property.PropertyType;
 break;
 default:
 throw new ArgumentException(

160 | Chapter 5: Implementing Dynamic and Reflection

 "Expected property or method.");
 }

 return (result, type);
}

Discussion
Earlier sections in this chapter worked primarily with properties as report inputs. In
this section we’ll modify the example in Recipe 5.2 and add a method that we’ll need
to invoke via reflection.

The first change is that ColumnDetail has a MemberInfo property, which holds meta‐
data for any type member.

The InventoryItem class has a CalculateTotal method. It multiplies the ItemPrice
and Count to show the total price for that amount of items.

The change in GetColumnDetails is in the LINQ statement, where it iterates on the
result of GetMembers, which is a MemberInfo[]. Unlike Recipe 5.2, we’re using Member
Info. This is required for this solution because we want information on both proper‐
ties and methods.

Finally, GetReflectedResult has a switch statement to figure out how to get a mem‐
ber’s value. Since the parameter is a MemberInfo, we look at the MemberType property
to figure out whether we’re working with a property or method. In either case, we
have to call GetProperty or GetMethod to get a PropertyInfo or MethodInfo, respec‐
tively. Call the Invoke method for methods, with item as the object instance to invoke
the method on. The second parameter to Invoke is null, indicating that the method,
CalculateTotal in this example, doesn’t have arguments. If you need to pass argu‐
ments, put an object[] in the second parameter of Invoke with the members in the
order that the method expects them. As in Recipe 5.2, call GetValue on the Property
Info instance, with item as the object reference to get the value of that property.

To summarize, anytime you need to call a method on an object via reflection, get its
Type object, get a MethodInfo (even if you need the intermediate step of pulling from
a MemberInfo), and call the Invoke method on the MethodInfo with the object
instance as the argument.

See Also
Recipe 5.2, “Accessing Type Members with Reflection”

5.4 Invoking Methods with Reflection | 161

5.5 Replacing Reflection with Dynamic Code
Problem
You’re using reflection but know what some of a type’s members are and want to sim‐
plify code.

Solution
This class contains the list of data for a report:

public class Inventory
{
 public string Title { get; set; }

 public List<object> Data { get; set; }
}

Here’s the Main method that populates the data:

static void Main()
{
 var inventory = new Inventory
 {
 Title = "Inventory Report",
 Data = new List<object>
 {
 new InventoryItem
 {
 PartNumber = "1",
 Description = "Part #1",
 Count = 3,
 ItemPrice = 5.26m
 },
 new InventoryItem
 {
 PartNumber = "2",
 Description = "Part #2",
 Count = 1,
 ItemPrice = 7.95m
 },
 new InventoryItem
 {
 PartNumber = "3",
 Description = "Part #3",
 Count = 2,
 ItemPrice = 23.13m
 },
 }
 };

162 | Chapter 5: Implementing Dynamic and Reflection

 string report = new Report().Generate(inventory);

 Console.WriteLine(report);
}

This method uses reflection to extract a property’s values:

public string Generate(object reportDetails)
{
 Type reportType = reportDetails.GetType();
 PropertyInfo titleProp = reportType.GetProperty("Title");
 string title = (string)titleProp.GetValue(reportDetails);

 var report = new StringBuilder($"# {title}\n\n");

 PropertyInfo dataProp = reportType.GetProperty("Data");
 List<object> items =
 (List<object>)dataProp.GetValue(reportDetails);

 Dictionary<string, ColumnDetail> columnDetails =
 GetColumnDetails(items);
 report.Append(GetHeaders(columnDetails));
 report.Append(GetRows(items, columnDetails));

 return report.ToString();
}

And this class extracts the same property values but uses dynamic:

public string Generate(dynamic reportDetails)
{
 string title = reportDetails.Title;

 var report = new StringBuilder(
 $"# {title}\n\n");

 List<object> items = reportDetails.Data;

 Dictionary<string, ColumnDetail> columnDetails =
 GetColumnDetails(items);
 report.Append(GetHeaders(columnDetails));
 report.Append(GetRows(items, columnDetails));

 return report.ToString();
}

Discussion
The concept of this solution is again to give users of the report library maximum con‐
trol over what types they want to work with. However, what if you did have some
constraints? For instance, there must be some way to set the report title, and you
would need to know what that property is. This solution meets the user halfway by

5.5 Replacing Reflection with Dynamic Code | 163

telling them to provide an object with Title and Data properties. Title has the
report title and Data has report rows. They can use any object they want as long as
they provide those properties. If the input objects had other properties on the object
we don’t care about, it won’t affect the report library.

The class we’ll use is Inventory, with a Title string and Data collection. The Main
method populates an Inventory instance and passes it to Generate.

We have two examples of Generate: one uses reflection and the other uses dynamic.
After getting the type, the first example calls GetProperty and GetValue to get the
value of each property. The rest of the method works just like in Recipe 5.2.

As you see, reflection can be verbose, making many method calls and converting
types. This is a good case for using dynamic. We know that Title and Data exist, so
why not just access them? That’s what the second example does. First, notice that the
reportDetails parameter type is dynamic. Then observe how the code calls Title
and Data, placing them in strongly typed variables.

The dynamic type is still type object but with a little extra magic
performed behind the scenes by the DLR.

While you don’t get IntelliSense during development because dynamic doesn’t know
what types it’s working with, you do get readable code. Behind the scenes, the DLR
did all the work for you. When you know the members of the types being passed to
the code, dynamic is a better mechanism for reflection.

See Also
Recipe 5.2, “Accessing Type Members with Reflection”

5.6 Performing Interop with Office Apps
Problem
You need to populate an Excel spreadsheet with object data with the simplest code
possible.

Solution
Here’s an enum with extra members for Excel:

public enum ReportType
{

164 | Chapter 5: Implementing Dynamic and Reflection

 Html,
 Markdown,
 ExcelTyped,
 ExcelDynamic
}

Excel report generator without dynamic:

public class ExcelTypedGenerator<TData> : GeneratorBase<TData>
{
 ApplicationClass excelApp;
 Workbook wkBook;
 Worksheet wkSheet;

 public ExcelTypedGenerator()
 {
 excelApp = new ApplicationClass();
 excelApp.Visible = true;

 wkBook = excelApp.Workbooks.Add(Missing.Value);
 wkSheet = (Worksheet)wkBook.ActiveSheet;
 }

 protected override StringBuilder GetTitle()
 {
 wkSheet.Cells[1, 1] = "Report";

 return new StringBuilder("Added Title...\n");
 }

 protected override StringBuilder GetHeaders(
 Dictionary<string, ColumnDetail> details)
 {
 ColumnDetail[] values = details.Values.ToArray();

 for (int i = 0; i < values.Length; i++)
 {
 ColumnDetail detail = values[i];
 wkSheet.Cells[3, i+1] = detail.Attribute.Name;
 }

 return new StringBuilder("Added Header...\n");
 }

 protected override StringBuilder GetRows(
 List<TData> items,
 Dictionary<string, ColumnDetail> details)
 {
 const int DataStartRow = 4;

 int rows = items.Count;
 int cols = details.Count;

5.6 Performing Interop with Office Apps | 165

 var data = new string[rows, cols];

 for (int i = 0; i < rows; i++)
 {
 List<string> columns =
 GetColumns(details.Values, items[i]);

 for (int j = 0; j < cols; j++)
 {
 data[i, j] = columns[j];
 }
 }

 int FirstCol = 'A';
 int LastExcelCol = FirstCol + cols - 1;
 int LastExcelRow = DataStartRow + rows - 1;
 string EndRangeCol = ((char)LastExcelCol).ToString();
 string EndRangeRow = LastExcelRow.ToString();

 string EndRange = EndRangeCol + EndRangeRow;
 string BeginRange = "A" + DataStartRow.ToString();

 var dataRange = wkSheet.get_Range(BeginRange, EndRange);
 dataRange.Value2 = data;

 wkBook.SaveAs(
 "Report.xlsx", Missing.Value, Missing.Value,
 Missing.Value, Missing.Value, Missing.Value,
 XlSaveAsAccessMode.xlShared, Missing.Value, Missing.Value,
 Missing.Value, Missing.Value, Missing.Value);

 return new StringBuilder(
 "Added Data...\n" +
 "Excel file created at Report.xlsx");
 }
}

Excel report generator with dynamic:

public class ExcelDynamicGenerator<TData> : GeneratorBase<TData>
{
 ApplicationClass excelApp;
 dynamic wkBook;
 Worksheet wkSheet;

 public ExcelDynamicGenerator()
 {
 excelApp = new ApplicationClass();
 excelApp.Visible = true;

 wkBook = excelApp.Workbooks.Add();
 wkSheet = wkBook.ActiveSheet;
 }

166 | Chapter 5: Implementing Dynamic and Reflection

 protected override StringBuilder GetTitle()
 {
 wkSheet.Cells[1, 1] = "Report";

 return new StringBuilder("Added Title...\n");
 }

 protected override StringBuilder GetHeaders(
 Dictionary<string, ColumnDetail> details)
 {
 ColumnDetail[] values = details.Values.ToArray();

 for (int i = 0; i < values.Length; i++)
 {
 ColumnDetail detail = values[i];
 wkSheet.Cells[3, i+1] = detail.Attribute.Name;
 }

 return new StringBuilder("Added Header...\n");
 }

 protected override StringBuilder GetRows(
 List<TData> items,
 Dictionary<string, ColumnDetail> details)
 {
 const int DataStartRow = 4;

 int rows = items.Count;
 int cols = details.Count;

 var data = new string[rows, cols];

 for (int i = 0; i < rows; i++)
 {
 List<string> columns =
 GetColumns(details.Values, items[i]);

 for (int j = 0; j < cols; j++)
 {
 data[i, j] = columns[j];
 }
 }

 int FirstCol = 'A';
 int LastExcelCol = FirstCol + cols - 1;
 int LastExcelRow = DataStartRow + rows - 1;
 string EndRangeCol = ((char)LastExcelCol).ToString();
 string EndRangeRow = LastExcelRow.ToString();

 string EndRange = EndRangeCol + EndRangeRow;
 string BeginRange = "A" + DataStartRow.ToString();

5.6 Performing Interop with Office Apps | 167

 var dataRange = wkSheet.get_Range(BeginRange, EndRange);
 dataRange.Value2 = data;

 wkBook.SaveAs(
 "Report.xlsx",
 XlSaveAsAccessMode.xlShared);

 return new StringBuilder(
 "Added Data...\n" +
 "Excel file created at Report.xlsx");
 }
}

Discussion
This example is based on the multiple report format generation code in Recipe 5.3,
which briefly explains how to add another report type. This solution shows how to
do it.

First, notice that the ReportType enum has two extra members: ExcelTyped and
ExcelDynamic. Both use the convention where ExcelTyped creates a ExcelTyped
Generator instance and ExcelDynamic creates an ExcelDynamicGenerator instance.
The difference is that ExcelTypedGenerator uses strongly typed code to generate an
Excel report, and ExcelDynamicGenerator uses dynamic code to generate an Excel
report.

You can use techniques like this to automate any Microsoft Office
application. The trick is to ensure you’ve installed Visual Studio
Tools for Office (VSTO) via the Visual Studio Installer. This will
install what is called primary interop assemblies (PIAs). After instal‐
lation, you can find these PIAs under your Visual Studio installa‐
tion folder (for instance, the folder on my machine is C:\Program
Files (x86)\Microsoft Visual Studio\Shared\Visual Studio Tools for
Office\PIA) and use the version corresponding to the Microsoft
Office version you have installed. Search the download options if
you have an older version of Office that the VSTO couldn’t install.

To see the differences between the two examples, go member by member. In particu‐
lar, ExcelTypedGenerator has strongly typed fields, so it must use the Missing.Value
placeholder anytime it doesn’t use a parameter and needs to perform a conversion on
return types. Notice the SaveAs method call at the end of the GetRows method, which
is particularly onerous.

In contrast, compare those examples with the ExcelDynamicGenerator code. Making
the wkBook field dynamic, rather than strongly typed, transforms the code. No more

168 | Chapter 5: Implementing Dynamic and Reflection

https://oreil.ly/vbMvL

Missing.Value placeholders or type conversions. The code is much easier to write
and easier to read.

See Also
Recipe 5.3, “Instantiating Type Members with Reflection”

5.7 Creating an Inherently Dynamic Type
Problem
You have data in a proprietary format but want to access members through an object
without parsing yourself.

Solution
This class holds data to display in a report:

public class LogEntry
{
 [Column("Log Date", Format = "{0:yyyy-MM-dd hh:mm}")]
 public DateTime CreatedAt { get; set; }

 [Column("Severity")]
 public string Type { get; set; }

 [Column("Location")]
 public string Where { get; set; }

 [Column("Message")]
 public string Description { get; set; }
}

These methods get log data and return a list of DynamicObject types with that data:

static List<dynamic> GetData()
{
 string headers = "Date|Severity|Location|Message";

 string logData = GetLogData();

 return
 (from line in logData.Split('\n')
 select new DynamicLog(headers, line))
 .ToList<dynamic>();
}

static string GetLogData()
{
 return

5.7 Creating an Inherently Dynamic Type | 169

"2022-11-12 12:34:56.7890|INFO|Section_05_07.Program|Got this far\n" +
"2022-11-12 12:35:12.3456|ERROR|Section_05_07.Report|Index out of range\n" +
"2022-11-12 12:55:34.5678|WARNING|Section_05_07.Report|Please check this";
}

This class is a DynamicObject that knows how to read log files and dynamically
expose properties:

public class DynamicLog : DynamicObject
{
 Dictionary<string, string> members =
 new Dictionary<string, string>();

 public DynamicLog(string headerString, string logString)
 {
 string[] headers = headerString.Split('|');
 string[] logData = logString.Split('|');

 for (int i = 0; i < headers.Length; i++)
 members[headers[i]] = logData[i];
 }

 public override bool TryGetMember(
 GetMemberBinder binder, out object result)
 {
 result = members[binder.Name];
 return true;
 }

 public override bool TryInvokeMember(
 InvokeMemberBinder binder, object[] args, out object result)
 {
 return base.TryInvokeMember(binder, args, out result);
 }

 public override bool TrySetMember(
 SetMemberBinder binder, object value)
 {
 members[binder.Name] = (string)value;
 return true;
 }
}

The Main method consumes the dynamic data, populates data objects, and gets a new
report:

static void Main()
{
 List<dynamic> logData = GetData();

 var tempDateTime = DateTime.MinValue;
 List<object> inventory =
 (from log in logData

170 | Chapter 5: Implementing Dynamic and Reflection

 let canParse =
 DateTime.TryParse(
 log.Date, out tempDateTime)
 select new LogEntry
 {
 CreatedAt = tempDateTime,
 Type = log.Severity,
 Where = log.Location,
 Description = log.Message
 })
 .ToList<object>();

 string report = new Report().Generate(inventory);

 Console.WriteLine(report);
}

Discussion
The DynamicObject type is part of the .NET Framework and supports the DLR for
interoperability with dynamic languages. It’s a peculiar type that lets anyone call type
members, and it can intercept the call and behave in any way you’ve programmed it
to. Rather than wave hands and enumerate several ways to use DynamicObject, this
solution focuses on the problem where you need an object to work on proprietary
data. In this solution, the data is a log file format. Here, we’ll use the DynamicObject
to provide the data and the report library from Recipe 5.2 to display the log data.

The LogEntry class represents a row in the report. We can’t give a DynamicObject
instance to Report because there isn’t a way to reflect on it and extract attributes. Any
workaround is cumbersome, and it’s easier to use the DynamicObject for working
with the data, generate a collection of LogEntry objects, and pass them to the Report.

The GetLogData method shows what the log file looks like. GetData defines a head
ers string, which is metadata for each entry of the log file. The LINQ query iterates
through each line of the log, resulting in a List<dynamic>. The projection instantiates
a new DynamicLog instance with the header and log entry.

The DynamicLog type derives from DynamicObject, implementing only the methods it
needs. The DynamicLog implementation shows a few of these members: TryGetMem
ber, TryInvokeMember, and TrySetMember. The solution doesn’t use TryInvokeMem
ber, but I left it in there to show that DynamicObject does more than work with prop‐
erties and that there are other overloads. The Dictionary<string, string> mem
bers, hold a value for each field in the log with the key coming from the header and
the value coming from the identically positioned string in the log file.

The constructor populates members. It splits each field on the pipe, (|), separator
and iterates through the headers until members has an entry for each column. The

5.7 Creating an Inherently Dynamic Type | 171

TryGetMembers method reads from the dictionary to return the value via the out
object result parameter. Remember to return true when successful because
returning false indicates that you couldn’t perform the operation, and the user will
receive a runtime exception. TrySetMember populates the dictionary with the value.

GetMemberBinder and SetMemberBinder contain metadata on the property that is
being accessed. For example, the following would call TryGetMember:

string severity = log.Severity;

Assuming that log is an instance of DynamicLog, the GetMemberBinder Name property
would be Severity. It would index into the dictionary and return whatever value is
assigned to that key. Similarly, the following would call TrySetMember:

log.Severity = "ERROR";

In this case, binder.Name would be Severity, and it would update that key in the dic‐
tionary with the value ERROR.

That means now we have an object where you can set property names of your choos‐
ing and provide any log file of the same format (pipe-separated). No need for a cus‐
tom class every time you want to accommodate a pipe-separated format log file.

GetData returns a List<dynamic>. Because it’s a dynamic object and we already know
what the property names should be (they match the header), we can project into
LogEntry instances by only specifying the property name on the dynamic object.
Additionally, you could specify what those headers should be in a configuration file
or database where they can be data-driven and change every time. Maybe you even
want the ability to change the delimiter on the file to accommodate handling even
more file types. As you can see, that’s easy to do with DynamicObject.

See Also
Recipe 5.2, “Accessing Type Members with Reflection”

5.8 Adding and Removing Type Members Dynamically
Problem
You want a fully dynamic object that you can add members to during runtime, as in
JavaScript.

Solution
This method uses an ExpandoObject to collect data:

172 | Chapter 5: Implementing Dynamic and Reflection

static List<dynamic> GetData()
{
 const int Date = 0;
 const int Severity = 1;
 const int Location = 2;
 const int Message = 3;

 var logEntries = new List<dynamic>();

 string logData = GetLogData();

 foreach (var line in logData.Split('\n'))
 {
 string[] columns = line.Split('|');

 dynamic logEntry = new ExpandoObject();

 logEntry.Date = columns[Date];
 logEntry.Severity = columns[Severity];
 logEntry.Location = columns[Location];
 logEntry.Message = columns[Message];

 logEntries.Add(logEntry);
 }

 return logEntries;
}

static string GetLogData()
{
 return
 "2022-11-12 12:34:56.7890|INFO" +
 "|Section_05_07.Program|Got this far\n" +
 "2022-11-12 12:35:12.3456|ERROR" +
 "|Section_05_07.Report|Index out of range\n" +
 "2022-11-12 12:55:34.5678|WARNING" +
 "|Section_05_07.Report|Please check this";
}

The Main method converts a List<dynamic> to a List<LogEntry> and gets the
report:

static void Main()
{
 List<dynamic> logData = GetData();

 var tempDateTime = DateTime.MinValue;
 List<object> inventory =
 (from log in logData
 let canParse =
 DateTime.TryParse(
 log.Date, out tempDateTime)
 select new LogEntry

5.8 Adding and Removing Type Members Dynamically | 173

 {
 CreatedAt = tempDateTime,
 Type = log.Severity,
 Where = log.Location,
 Description = log.Message
 })
 .ToList<object>();

 string report = new Report().Generate(inventory);

 Console.WriteLine(report);
}

Discussion
This is similar to the DynamicObject example in Recipe 5.7, except it covers a simpler
case where you don’t need as much flexibility. What if you knew what the file format
was ahead of time and that it won’t change, yet you want a simple way to pull the data
into a dynamic object without creating a new type every time you need to send data
to the report?

In this case, you can use ExpandoObject, a .NET Framework type that lets you add
and remove type members on the fly, the same as in JavaScript.

In the solution, the GetData method instantiates an ExpandoObject, assigning it to
the dynamic logEntry. Then, it adds properties on the fly and populates them with
the parsed log file data.

The Main method accepts a List<dynamic> from GetData. As long as each object has
the properties it expects, everything works well.

See Also
Recipe 5.7, “Creating an Inherently Dynamic Type”

5.9 Calling Python Code from C#
Problem
You have a C# program and want to use some Python code but don’t want to rewrite
it.

Solution
This Python file has code that we need to use:

import sys
sys.path.append(

174 | Chapter 5: Implementing Dynamic and Reflection

 "/System/Library/Frameworks/Python.framework" +
 "/Versions/Current/lib/python2.7")

from random import *

class SemanticAnalysis:
 @staticmethod
 def Eval(text):
 val = random()
 return val < .5

This class represents social media data:

public class Tweet
{
 [Column("Screen Name")]
 public string ScreenName { get; set; }

 [Column("Date")]
 public DateTime CreatedAt { get; set; }

 [Column("Text")]
 public string Text { get; set; }

 [Column("Semantic Analysis")]
 public string Semantics { get; set; }
}

The Main method gets data and generates a report:

static void Main()
{
 List<object> tweets = GetTweets();

 string report = new Report().Generate(tweets);

 Console.WriteLine(report);
}

These are the required namespaces that are part of the IronPython NuGet package:

using IronPython.Hosting;
using Microsoft.Scripting.Hosting;

This method sets up the Python interop:

static List<object> GetTweets()
{
 ScriptRuntime py = Python.CreateRuntime();
 dynamic semantic = py.UseFile("../../../Semantic.py");
 dynamic semanticAnalysis = semantic.SemanticAnalysis();

 DateTime date = DateTime.UtcNow;

 var tweets = new List<object>

5.9 Calling Python Code from C# | 175

 {
 new Tweet
 {
 ScreenName = "SomePerson",
 CreatedAt = date.AddMinutes(5),
 Text = "Comment #1",
 Semantics = GetSemanticText(semanticAnalysis, "Comment #1")
 },
 new Tweet
 {
 ScreenName = "SomePerson",
 CreatedAt = date.AddMinutes(7),
 Text = "Comment #2",
 Semantics = GetSemanticText(semanticAnalysis, "Comment #2")
 },
 new Tweet
 {
 ScreenName = "SomePerson",
 CreatedAt = date.AddMinutes(12),
 Text = "Comment #3",
 Semantics = GetSemanticText(semanticAnalysis, "Comment #3")
 },
 };

 return tweets;
}

This method calls the Python code via dynamic instance:

static string GetSemanticText(dynamic semantic, string text)
{
 bool result = semantic.Eval(text);
 return result ? "Positive" : "Negative";
}

Discussion
The scenario in this example is one where you’re working with social media data. One
of the report items is semantics, telling whether a user’s tweet was positive or nega‐
tive. You’ve got this great semantic analysis AI model, but it’s built with TensorFlow
in a Python module. It would be helpful to be able to reuse that code instead of
rewriting it.

This is where the DLR comes in, because it lets you call Python (and other dynamic
languages) from C#. Considering that it could have taken many months to build a
machine learning model (or any other type of module), the advantage of reusing that
code across languages can be huge.

The SemanticAnalysis class in the Python file simulates a model, returning true for
a positive result or false for a negative result.

176 | Chapter 5: Implementing Dynamic and Reflection

The Main method calls GetTweets to get data and uses the Report class, which is the
same as in Recipe 5.2. The List<object> returned from GetTweets contains Tweet
objects that can work with the report generator.

To set this up, you’ll need to reference the IronPython package,
which you can find on NuGet. You also might find it useful to
install Python Tools for Visual Studio via the Visual Studio
Installer.

The GetTweets method needs a reference to the Python SemanticAnalysis class.
Calling CreateRuntime creates a DLR reference. Then you need to specify the loca‐
tion of the Python file via UseFile. After that, you can instantiate the SemanticAnaly
sis class. Each Tweet instance sets the Semantics property with a call to GetSemantic
Text, passing the SemanticAnalysis reference and text to evaluate.

The GetSemanticText method calls Eval with text as its parameter and returns a
bool result, which it then translates to a report-friendly “Positive” or “Negative”
string.

In just a few lines of code, you saw how easy it is to reuse important code that was
written in a dynamic language. Languages supported by the DLR include Ruby and
JavaScript, among others.

See Also
Recipe 5.2, “Accessing Type Members with Reflection”

5.10 Calling C# Code from Python
Problem
You have a Python program and want to use C# code but don’t want to rewrite it.

5.10 Calling C# Code from Python | 177

Solution
Here’s the main Python application that needs to use the report generator:

import clr, sys

sys.path.append(
 r"C:\Path Where You Cloned The Project" +
 "\Chapter05\Section-05-10\bin\Debug")
clr.AddReference(
 r"C:\Path Where You Cloned The Project" +
 \Chapter05\Section-05-10\bin\Debug\PythonToCS.dll")

from PythonToCS import Report
from PythonToCS import InventoryItem
from System import Decimal

inventory = [
 InventoryItem("1", "Part #1", 3, Decimal(5.26)),
 InventoryItem("2", "Part #2", 1, Decimal(7.95)),
 InventoryItem("3", "Part #1", 2, Decimal(23.13))]

rpt = Report()

result = rpt.GenerateDynamic(inventory)

print(result)

This class has a constructor to make it easier to work with in Python:

public class InventoryItem
{
 public InventoryItem(
 string partNumber, string description,
 int count, decimal itemPrice)
 {
 PartNumber = partNumber;
 Description = description;
 Count = count;
 ItemPrice = itemPrice;
 }

 [Column("Part #")]
 public string PartNumber { get; set; }

 [Column("Name")]
 public string Description { get; set; }

 [Column("Amount")]
 public int Count { get; set; }

 [Column("Price", Format = "{0:c}")]

178 | Chapter 5: Implementing Dynamic and Reflection

 public decimal ItemPrice { get; set; }
}

Here’s the C# method that the Python code calls to generate the report:

public string GenerateDynamic(dynamic[] items)
{
 List<object> inventory =
 (from item in items
 select new InventoryItem
 (
 item.PartNumber,
 item.Description,
 item.Count,
 item.ItemPrice
))
 .ToList<object>();

 return Generate(inventory);
}

Discussion
In Recipe 5.9, the scenario was to call Python from C#. The scenario in this problem
is opposite in that I have a Python application and need to be able to generate reports.
However, the report generator is written in C#. So much work has gone into the
report library that it doesn’t make sense to rewrite in Python. Fortunately, the DLR
allows us to call that C# code with Python.

The report is the same one used in Recipe 5.2 and the C# code has the same Inven
toryItem class.

To set this up, you might need to install the pythonnet package:
>pip install pythonnet

You set up the Python code by importing clr and sys, calling sys.path.append as a
reference to the path where the C# DLL resides and then calling clr.AddReference
to add a reference to the C# DLL you want to use.

In Python, whenever you need to use a .NET type from either the framework or a
custom assembly, use the from Namespace import type syntax, which is roughly
equivalent to a C# using declaration. The namespace in the C# source code is Python
ToCS and the code uses that to import a reference to Report and InventoryItem. It
also uses the System namespace to get a reference to the Decimal type, which aliases
the C# decimal type.

5.10 Calling C# Code from Python | 179

https://oreil.ly/hY9bZ

In Python, whenever you use square brackets, [], you’re creating a data structure
called a list. It’s a collection of objects with Python semantics. In this example, we’re
creating a list of InventoryItem, assigning it to a variable named inventory.

Notice we’re using Decimal for the last parameter, itemPrice, of the InventoryItem
constructor. Python doesn’t have a concept of decimal and will pass that value as a
float, which causes an error because the C# InventoryItem defines that parameter
as a decimal.

Next, the Python code instantiates Report, rpt, and calls GenerateDynamic, passing
inventory. This calls the GenerateDynamic in Report and automatically translates
inventory from a Python list into a C# dynamic[], items. Because each object in
items is dynamic, we can query it using a LINQ statement, accessing the names of
each object dynamically in the projection.

Finally, GenerateDynamically calls Generate, the application returns a report, and
the Python code prints the report.

See Also
Recipe 5.2, “Accessing Type Members with Reflection”

Recipe 5.9, “Calling Python Code from C#”

180 | Chapter 5: Implementing Dynamic and Reflection

CHAPTER 6

Programming Asynchronously

It used to be that most of the code anyone wrote was synchronous. Things like con‐
currency, thread pools, and parallel programming were the domain of specialized
experts who sometimes still got it wrong. Historical internet forums, UseNet, and
even books were full of warnings to not try multithreading unless you know what
you’re doing and have a strong requirement for it. However, that’s changed.

In 2010, Microsoft introduced the Task Parallel Library (TPL), which made it a lot
easier to write multithreaded code. This coincided with the common availability of
multithread/multicore CPU architectures. One of the TPL primitives was the Task
class, which represented a promise to perform some work, on a separate thread, and
return the results. Interestingly, PLINQ, which is covered in Recipe 4.10, shipped in
the same time frame. TPL is still an important part of the developer’s toolkit for in-
process CPU-intensive multithreading.

Building on the concepts of Task, from TPL, Microsoft introduced async via special‐
ized language syntax in C# 4. While we had asynchronous programming since C# 1,
through delegates, it was more complex and less efficient. In C# 5, async simplified
this by introducing the async/await keywords and making the code and its order of
execution very similar to synchronous code. In addition to simplification, a primary
use case for C# async is out-of-process communication, as opposed to where TPL
shines for in-process CPU intensive work. When going out-of-process, think about
accessing the file system, making a database query, or calling a REST API. Behind the
scenes, async manages the threads for these operations so they don’t block and
improves application performance and scalability. With async, we could reason about
our logic in a simple way and still have the benefits and sophistication of asynchro‐
nous operation.

Since its introduction, Microsoft has continued to improve async, both via language
features and .NET Framework libraries. This chapter covers these new features, such

181

as async Main methods, the new ValueTask type, async iterators, and async disposal.
There are also original capabilities of async that deserve special attention, such as
writing safe async libraries, managing concurrent async tasks, cancellation, and pro‐
gress reporting.

The theme of this chapter is checkout, where a customer has products in their shop‐
ping cart, they’ve started the checkout process, and the code needs to process each
checkout request. We’ll start with the proper way to use async with console
applications.

6.1 Creating Async Console Applications
Problem
You need to use a library in a console application, but it only has an async API.

Solution
This class has async methods:

public class CheckoutService
{
 public async Task<string> StartAsync()
 {
 await ValidateAddressAsync();
 await ValidateCreditAsync();
 await GetShoppingCartAsync();
 await FinalizeCheckoutAsync();

 return "Checkout Complete";
 }

 async Task ValidateAddressAsync()
 {
 // perform address validation
 }

 async Task ValidateCreditAsync()
 {
 // ensure credit is good
 }

 async Task GetShoppingCartAsync()
 {
 // get contents of shopping cart
 }

 async Task FinalizeCheckoutAsync()
 {

182 | Chapter 6: Programming Asynchronously

 // complete checkout transaction
 }
}

Here’s the old way to write an async console app:

class Program
{
 static void Main(string[] args)
 {
 var checkoutSvc = new CheckoutService();
 string result = string.Empty;

 Task<string> startedTask = checkoutSvc.StartAsync();
 startedTask.Wait();
 result = startedTask.Result;

 Console.WriteLine($"Result: {result}");
 }
}

Here’s the new recommended way to write an async console app:

static async Task Main()
{
 var checkoutSvc = new CheckoutService();

 string result = await checkoutSvc.StartAsync();

 Console.WriteLine($"Result: {result}");
}

Discussion
When first introduced, async was nearly everywhere and immediately useful. Still,
there were edge cases, such as Main methods and catch and finally blocks, where
async couldn’t be used. Fortunately, Microsoft fixed this in C# 7.1 and added more
support in other parts of the .NET Framework that were lacking, for instance, async
ActionResult in ASP.NET MVC. Recipe 6.3 shows how async iterators solve another
async problem.

A prominent async addition, described in this section, is async Main. The problem
was that, just like the CheckoutService class in the solution, many .NET Framework
types and third-party libraries were written for async. However, without async Main,
developers had to write problematic code. To demonstrate the problem, the solution
includes two versions of a Main method: the old synchronous way and the new async
approach.

With the old synchronous technique, developers were forced to use Wait() and
Result, which are typical async antipatterns because of thread blocking and potential

6.1 Creating Async Console Applications | 183

thread deadlocks and race conditions. Recipe 6.4 explains a scenario where writing
code like this can cause a deadlock (and how to avoid it). These are members of the
Task type, which async methods return. Unfortunately, this was the only choice in the
first iteration of async if you wanted to write a command-line utility, text-based app,
or demo app.

The second Main in the solution shows the new syntax, with the async modifier and
the Task return type. All we have to do is await the call to checkoutSvc.Start
Async() and the code works fine.

As you know, Main can return void or int. The solution example
with Task is for a void return. You can change that to Task<int>
for an int return.

Essentially, Microsoft hasn’t recommended a safe way to call from synchronous code
into asynchronous code. So this was a welcome addition that makes it much easier to
write console apps that call async code. Also, notice that the entire call chain, from
Main to CheckoutService.StartAsync and to other CheckoutService methods, is all
async. Ideally, the entire call chain is async, but occasionally you will have an async
method that only calls synchronous methods; you can learn more about that in
Recipe 6.6.

See Also
Recipe 6.3, “Creating Async Iterators”

Recipe 6.4, “Writing Safe Async Libraries”

Recipe 6.6, “Calling Synchronous Code from Async Code”

6.2 Reducing Memory Allocations for Async Return Values
Problem
You want to reduce memory consumption for your async code.

Solution
Here’s how to use ValueTask instead of Task in async methods:

public class CheckoutService
{
 public async ValueTask<string> StartAsync()
 {

184 | Chapter 6: Programming Asynchronously

 await ValidateAddressAsync();
 await ValidateCreditAsync();
 await GetShoppingCartAsync();
 await FinalizeCheckoutAsync();

 return "Checkout Complete";
 }

 async ValueTask ValidateAddressAsync()
 {
 // perform address validation
 }

 async ValueTask ValidateCreditAsync()
 {
 // ensure credit is good
 }

 async ValueTask GetShoppingCartAsync()
 {
 // get contents of shopping cart
 }

 async ValueTask FinalizeCheckoutAsync()
 {
 // complete checkout transaction
 }
}

And here’s the app that consumes that class:

class Program
{
 static async Task Main()
 {
 var checkoutSvc = new CheckoutService();

 string result = await checkoutSvc.StartAsync();

 Console.WriteLine($"Result: {result}");
 }
}

Discussion
Since the beginning of async, we’ve returned types by either Task or Task<T>. That
has always worked and will continue to work fine for any async code. Over time,
though, people identified specific circumstances that open new performance oppor‐
tunities concerning the fact that Task is a reference type and the runtime caches
Tasks.

6.2 Reducing Memory Allocations for Async Return Values | 185

The Task class, by definition, is a reference type. That means the runtime allocates
heap memory every time an async method returns a Task. As you know, value types
allocate memory where they are defined, but they don’t cause garbage collector
overhead.

Perhaps not as obvious, another feature of Tasks is that the runtime caches them.
Rather than await a method, it’s possible to reference the returned Task from an
async method. With that Task reference, you can perform concurrent invocations on
multiple tasks. You could also invoke that task more than once. The important point
here is that the runtime has cached the task, resulting in more memory usage.

As mentioned, in normal coding a Task works fine and you might not care. However,
think about high-performance scenarios where a lot of Task objects get allocated and
you are interested in finding ways to improve performance and scalability. The solu‐
tion simulates a concept where this might matter. Imagine a business that needs to
process a high volume of shopping cart checkouts each day. In that case, eliminating
any overhead for object allocation, garbage collection, and memory pressure could be
beneficial.

To address these concerns, Microsoft added support for ValueTask (and Value
Task<T>) as async return types. As its name suggests, ValueTask is a value type.
Because it’s a value type, the only memory allocation it incurs is wherever the value
resides, on the stack in this case. By definition of a value type, there isn’t any unique
heap allocation or garbage collection just for that value.

Further, the runtime does not cache ValueType, resulting in less memory allocation
and cache management. This works great in high-performance/scalability scenarios.
The CheckoutService in the solution demonstrates how to use ValueTask: just use it
in place of Task. The assumption here is that the code will always await the method
and never try to reuse the ValueTask. In the solution, that’s exactly what happens.

If you’re writing a reusable library for other developers, consider
whether ValueTask is appropriate. By using ValueTask, you elimi‐
nate the ability of consuming code to perform concurrent task
operations or any other advanced scenarios for where a Task is
more appropriate. Task gives the most flexibility in this case.

As is with most things, there’s a trade-off. All of the scenarios for which the runtime
Task cache were useful are no longer options for ValueTask. With ValueTask, you
can’t combine operations or reuse a ValueTask after the first time. Recipes 6.7 and 6.8
show a couple of scenarios where ValueTask doesn’t work.

To recap, use ValueTask when performance and scalability are a concern, and you’re
free to use Task any other time.

186 | Chapter 6: Programming Asynchronously

See Also
Recipe 6.7, “Waiting for Parallel Tasks to Complete”

Recipe 6.8, “Handling Parallel Tasks as They Complete”

6.3 Creating Async Iterators
Problem
You’re working with async code and a classical synchronous iterator won’t work.

Solution
Here’s the data for the checkout process:

public class CheckoutRequest
{
 public Guid ShoppingCartID { get; set; }

 public string Name { get; set; }

 public string Card { get; set; }

 public string Address { get; set; }
}

This is the checkout process for each request:

public class CheckoutService
{
 public async ValueTask<string> StartAsync(CheckoutRequest request)
 {
 return
 $"Checkout Complete for Shopping " +
 $"Basket: {request.ShoppingCartID}";
 }
}

The async iterator processes each request:

public class CheckoutStream
{
 public async IAsyncEnumerable<CheckoutRequest> GetRequestsAsync()
 {
 while (true)
 {
 IEnumerable<CheckoutRequest> requests =
 await GetNextBatchAsync();

 foreach (var request in requests)
 yield return request;

6.3 Creating Async Iterators | 187

 await Task.Delay(1000);
 }
 }

 async Task<IEnumerable<CheckoutRequest>> GetNextBatchAsync()
 {
 return new List<CheckoutRequest>
 {
 new CheckoutRequest
 {
 ShoppingCartID = Guid.NewGuid(),
 Address = "123 4th St",
 Card = "1234 5678 9012 3456",
 Name = "First Card Name"
 },
 new CheckoutRequest
 {
 ShoppingCartID = Guid.NewGuid(),
 Address = "789 1st Ave",
 Card = "2345 6789 0123 4567",
 Name = "Second Card Name"
 },
 new CheckoutRequest
 {
 ShoppingCartID = Guid.NewGuid(),
 Address = "123 4th St",
 Card = "1234 5678 9012 3456",
 Name = "First Card Name"
 },
 };
 }
}

Finally, the application consumes the iterator to process each request:

static async Task Main()
{
 var checkoutSvc = new CheckoutService();
 var checkoutStrm = new CheckoutStream();

 await foreach (var request in checkoutStrm.GetRequestsAsync())
 {
 string result = await checkoutSvc.StartAsync(request);

 Console.WriteLine($"Result: {result}");
 }
}

188 | Chapter 6: Programming Asynchronously

Discussion
While iterators are essential for .NET Framework collections like List<T> or a cus‐
tom collection you’ve written, they can also be useful abstractions that hide complex
data acquisition logic. The solution demonstrates a related scenario where an iterator
might be useful—processing a stream of CheckoutRequests as if it were a collection.

An important aspect of the solution is that it’s impractical to hold too many Checkout
Request instances in memory. If a system continuously receives orders, it needs to
scale. In the solution, we imagine a polling implementation that continuously gets the
next batch of CheckoutRequests. This reduces memory pressure and the iterator pro‐
vides an abstraction that hides the complex details of how the program receives
orders.

In the early days of async, it would have been more complex to perform a task like
this because the polling is asynchronous, making an out-of-process request. It’s
clearly possible to find a library that lets this happen synchronously, but that ignores
the benefit of async. The solution solves this problem with a newer interface for async
streams, IAsyncEnumerable.

The CheckoutStream class has an iterator named GetRequestsAsync, returning
IAsyncEnumerable<CheckoutRequest>. This is the async equivalent of the
IEnumerable<T> for synchronous iterators. Although the while loop continues for‐
ever in this demo and you’ll need to manually stop the app, Recipe 6.9 shows how to
cancel the process gracefully. This iterator gets a new batch of CheckoutRequests,
yields each item in the batch, and sleeps for a second before getting the next batch.
The sleep, Task.Delay, is for demo purposes so you can see the output.

The yield keyword is syntactic sugar to help turn type members
into iterators. IEnumerable<T> types, including IAsyncEnumerable
<T>, have MoveNext and Current members, where MoveNext loads
Current with the next value it reads. Behind the scenes, when the
C# compiler sees an iterator, it generates a new class with the Move
Next and Current members. When invoking yield, such as in
yield return request in GetRequestsAsync, the C# compiler
instantiates that new class, calls MoveNext, and returns Current.

The GetNextBatchAsync method only returns a list of CheckoutRequests. However,
imagine that this is really an async call to a network endpoint, queue, or service bus
that has the next set of CheckoutRequest instances ready. Recipes 1.9, 3.7, and 3.9
demonstrate some of the issues you’ll care about when doing this. By moving all this
complexity into the iterator, application code can consume data in a much simpler
manner.

6.3 Creating Async Iterators | 189

The Main method shows how to consume an async iterator. The first thing to notice is
the async modifier on the foreach loop. This was a new addition to C# for async
streams. As you can see, it allows foreach to work with an IAsyncEnumerable<T>
iterator.

See Also
Recipe 1.9, “Designing a Custom Exception”

Recipe 3.7, “Rethrowing Exceptions”

Recipe 3.9, “Building Resilient Network Connections”

Recipe 6.9, “Cancelling Async Operations”

6.4 Writing Safe Async Libraries
Problem
Your async code is causing a deadlock with the UI thread.

Solution
This class marshals the code off of the UI thread:

public class CheckoutService
{
 public async Task<string> StartAsync()
 {
 await ValidateAddressAsync().ConfigureAwait(false);
 await ValidateCreditAsync().ConfigureAwait(false);
 await GetShoppingCartAsync().ConfigureAwait(false);
 await FinalizeCheckoutAsync().ConfigureAwait(false);

 return "Checkout Complete";
 }

 async Task ValidateAddressAsync()
 {
 // perform address validation
 }

 async Task ValidateCreditAsync()
 {
 // ensure credit is good
 }

 async Task GetShoppingCartAsync()
 {
 // get contents of shopping cart

190 | Chapter 6: Programming Asynchronously

 }

 async Task FinalizeCheckoutAsync()
 {
 // complete checkout transaction
 }
}

Here’s the program that calls it:

static async Task Main()
{
 var checkoutSvc = new CheckoutService();

 string result = await checkoutSvc.StartAsync();

 Console.WriteLine($"Result: {result}");
}

Discussion
UI technology such as Windows Forms, Windows Presentation Foundation (WPF),
and WinUI run on a single thread—the UI thread. This simplifies the work a devel‐
oper needs to do when working with UI code. However, if you’re using async or writ‐
ing multithreaded logic, it’s easy for things to go wrong. In particular, if another
thread attempts to do anything with the UI or run in the same logic of the UI thread,
you run the risk of race conditions and deadlocks. To understand how bad the prob‐
lem can be, consider that your application often runs perfectly in the development,
QA, and production environments. Then, without notice, the UI locks up, customers
begin to complain, and you can’t reproduce the problem.

In some cases, depending on the UI you’re using and the .NET ver‐
sion, you might get an exception like the following when accessing
the UI from a non-UI thread:

System.InvalidOperationException:
 'The calling thread cannot access this object
 because a different thread owns it.'

This is good because at least you know there’s a problem.

Recipe 6.1 explained how calling Wait or assigning Result on a Task could cause a
deadlock. The problem here occurs because Wait and Result block the UI thread,
waiting on a response. The called async code executes, returns, and tries to run on
the same thread. However, as just mentioned, the UI thread is blocked, causing a
deadlock.

The solution fixes this problem in the CheckoutService.StartAsync method. Notice
how it calls ConfigureAwait(false)—the only difference between this code and the

6.4 Writing Safe Async Libraries | 191

solution in Recipe 6.1. What this does is marshal execution off of the calling thread
(the UI thread) and onto a new thread. Now, when the thread returns from the async
call, it won’t cause a deadlock.

ConfigureAwait(true) is the default condition when awaiting a
Task. Changing this default is only needed in advanced scenarios
that are out of the scope of practical everyday engineering. If you
ever see it in code, it might be good to question why someone
needed it.

A significant point to be made here is that the problem statement clearly says libra‐
ries. When writing a library, you want the code to work regardless of what code called
it. Therefore, the library code must be independent and unaware of who the caller is.
This is an example, as stated in Recipe 1.5, where separation of concerns is important.
If the library code doesn’t manipulate the UI, which it never should, you’ll avoid
threading problems like race conditions and deadlocks.

It’s important to note that if one await is on ConfigureAwait(false), all awaits in a
method should be also. The reason is that some methods execute so quickly that they
execute synchronously, and ConfigureAwait(false) doesn’t marshal the thread. If
another await then runs asynchronously, without ConfigureAwait(false), you’ll
have the same threading problems as if ConfigureAwait(false) was never called.

Visual Studio analyzers set warnings on all non-UI code with async
calls missing ConfigureAwait(false). It might be tedious to add
these, but you still should. Even if you think the first await of a
method is guaranteed to run asynchronously, logic changes over
time with maintenance, and you might inadvertently cause thread‐
ing problems. It’s safer to leave this analyzer enabled and follow the
recommendations.

Another benefit of ConfigureAwait(false) is that it slightly improves efficiency. The
default, ConfigureAwait(true), incurs overhead for setting up a callback that mar‐
shals the completed thread onto the UI thread. ConfigureAwait(false) avoids this.

Going back to the point about ConfigureAwait(false) being appropriate for library
code, there are times when you don’t want to use it. More specifically, you don’t want
to call ConfigureAwait(false) in UI code, in particular event handlers. Think about
an event handler and what it does. It gets called in response to some user action, like a
button click, and it sets status, updates waiting indicators, disables controls that the
user shouldn’t interact with, makes the call, and afterward resets the UI. All of this
work is happening on the UI thread, as it should. In this case, you don’t want to

192 | Chapter 6: Programming Asynchronously

marshal off the UI thread with ConfigureAwait(false) because that will cause mul‐
tithreaded UI problems.

Although library code should never know about a UI, there are times when the code
should communicate progress or status. Rather than accessing UI code directly,
there’s another way to communicate status, as discussed in the next section.

See Also
Recipe 1.5, “Designing Application Layers”

Recipe 6.5, “Updating Progress Asynchronously”

6.5 Updating Progress Asynchronously
Problem
You need to display the status from an async task without blocking the UI thread.

Solution
This class holds progress status info:

public class CheckoutRequestProgress
{
 public int Total { get; set; }

 public string Message { get; set; }
}

This method reports progress:

public async IAsyncEnumerable<CheckoutRequest>
 GetRequestsAsync(IProgress<CheckoutRequestProgress> progress)
{
 int total = 0;

 while (true)
 {
 List<CheckoutRequest> requests =
 await GetNextBatchAsync().ConfigureAwait(false);

 total += requests.Count;

 foreach (var request in requests)
 yield return request;

 progress.Report(
 new CheckoutRequestProgress
 {

6.5 Updating Progress Asynchronously | 193

 Total = total,
 Message = "New Batch of Checkout Requests"
 });

 await Task.Delay(1000).ConfigureAwait(false);
 }
}

Here’s the program that initializes and consumes progress updates:

static async Task Main()
{
 var checkoutSvc = new CheckoutService();
 var checkoutStrm = new CheckoutStream();

 IProgress<CheckoutRequestProgress> progress =
 new Progress<CheckoutRequestProgress>(p =>
 {
 Console.WriteLine(
 $"\n" +
 $"Total: {p.Total}, " +
 $"{p.Message}" +
 $"\n");
 });

 await foreach (var request in
 checkoutStrm.GetRequestsAsync(progress))
 {
 string result = await checkoutSvc.StartAsync(request);

 Console.WriteLine($"Result: {result}");
 }
}

Discussion
As explained in Recipe 6.4, library code should never update the UI directly. If prop‐
erly written, it will be running on a separate thread and be oblivious to who its caller
is. That said, there are times when the business layer or library code might want to
inform a caller of progress or status. The solution shows a situation where an iterator
updates the UI with progress, defined in the CheckoutRequestProgress class. Essen‐
tially, the library code defines what type of progress information it offers and the call‐
ing code works with that. In this case, it’s the total number of orders processed and
some message indicating status.

The GetRequestAsync method accepts a parameter of IProgress<CheckoutRequest
Progress>, progress. The IProgress<T> is part of the .NET Framework, as is the
Progress<T> class, which implements IProgress<T>. With the progress instance,
GetRequestsAsync calls Report, passing an instance of CheckoutRequestProgress
with populated properties. This sends the progress to a handler in the UI.

194 | Chapter 6: Programming Asynchronously

The Main method sets up reporting by instantiating a Progress<CheckoutRequest
Progress> and assigning it to progress, an IProgress<CheckoutRequestProgress>.
The Progress<T> constructor accepts an Action delegate, and Main assigns a lambda
that writes progress to the console. Every time GetRequestsAsync calls Report, this
lambda executes. Going full circle, Main passes progress as an argument to the Get
RequestsAsync call, so it can reference the same object to report on.

You might have noticed that GetRequestAsync is running asynchronously, and the
await on GetNextBatchAsync and Task.Delay also call ConfigureAwait(false). If
that code runs on another thread, other than the UI thread, what’s the possibility of a
deadlock? None, because Progress<T> marshals the call back onto the UI thread so
the code can safely interact with the UI. Remember, the library code, GetRequests
Async, has no knowledge of the lambda argument for the Process<T> constructor’s
Action parameter. That means the lambda can safely access any UI code as necessary
for displaying progress.

See Also
Recipe 6.4, “Writing Safe Async Libraries”

6.6 Calling Synchronous Code from Async Code
Problem
The only code inside your async method is synchronous and you want to await it
asynchronously.

Solution
This class demonstrates how to return asynchronous results from synchronous logic:

public class CheckoutService
{
 public async Task<string> StartAsync()
 {
 await ValidateAddressAsync().ConfigureAwait(false);
 await ValidateCreditAsync().ConfigureAwait(false);
 await GetShoppingCartAsync().ConfigureAwait(false);
 await FinalizeCheckoutAsync().ConfigureAwait(false);

 return "Checkout Complete";
 }

 async Task<bool> ValidateAddressAsync()
 {
 bool result = true;
 return await Task.FromResult(result);

6.6 Calling Synchronous Code from Async Code | 195

 }

 async Task<bool> ValidateCreditAsync()
 {
 bool result = true;
 return await Task.FromResult(result);
 }

 async Task<bool> GetShoppingCartAsync()
 {
 bool result = true;
 return await Task.FromResult(result);
 }

 async Task FinalizeCheckoutAsync()
 {
 await Task.CompletedTask;
 }
}

This is the code that runs the app:

static async Task Main()
{
 var checkoutSvc = new CheckoutService();

 string result = await checkoutSvc.StartAsync();

 Console.WriteLine($"Result: {result}");
}

Discussion
For simplicity, previous sections of this chapter call synchronous code from asyn‐
chronous code. One of the things you might have noticed is that Visual Studio (same
as other IDEs) shows green squiggly underlines when an async method doesn’t await
anything. You’ll also receive the following warning:

CS1998: This async method lacks 'await' operators
and will run synchronously.
Consider using the 'await' operator to await non-blocking API calls,
or 'await Task.Run(...)' to do CPU-bound work on a background thread.

It’s good the compiler emits this warning because it could be an error. It’s possible you
forgot to add the await modifier to an async method call. In that case, program exe‐
cution doesn’t stop at the awaited method. Both the async method and the code that
calls it run. The async method that wasn’t awaited might not complete if the program
exits.

196 | Chapter 6: Programming Asynchronously

Another problem is that if the async method that wasn’t awaited throws an exception,
it won’t be caught because the calling code continued to run. A similar problem hap‐
pens with async void methods where you can’t await them and there’s no way to
catch exceptions.

A couple of places in this chapter describe compiler warnings asso‐
ciated with async code. In a lot of circumstances, these warnings
represent error conditions. Too often, I’ve encountered applications
with unmanageable warning walls. It’s as if the developers some‐
how don’t believe warnings are a problem or aren’t paying atten‐
tion. Understanding the implications of how a warning could be
serious, especially accidentally forgetting to await an async method
or failing to add ConfigureAwait(false), as described in Recipe
6.4, might provide the motivation to prioritize cleaning up and
maintaining warnings.

Sometimes the code inside of an async method is genuinely synchronous. It might
have originally been async but changed in maintenance, or you have to implement an
interface. In this case, you have a couple of approaches. One is to remove the async/
await keywords in the call chain until you reach a higher-level method that requires
async. If there are multiple callers awaiting that method or it’s part of a public inter‐
face for multiple applications, you might not want to do that refactoring right away.
The other approach, demonstrated in the solution, is to await Task.FromResult<T>.

You can see how this works in the CheckoutService, for StartAsync, where each
method returns the result of awaiting Task.FromResult<T>. The Task.FromResult
<T> method is generic, so you can use it on any type.

Awaiting Task.FromResult<T> works when the method needs to return a value.
However, the FinalizeTaskAsync method only returns Task. Notice how that
method simply awaits Task.CompletedTask.

One of the things you might be thinking is that this is extra work just to get rid of a
warning. While that’s true, consider the benefits. You do clear the warning and enjoy
the productivity boost in keeping the warning wall trimmed. More importantly, the
code explicitly states its intention, and developers doing maintenance will clearly see
there isn’t an error from a missing await—the code is correct.

See Also
Recipe 6.4, “Writing Safe Async Libraries”

6.6 Calling Synchronous Code from Async Code | 197

6.7 Waiting for Parallel Tasks to Complete
Problem
You have multiple tasks, running in parallel, and need to wait for all of them to com‐
plete before continuing.

Solution
This code runs parallel tasks:

public class CheckoutService
{
 class WhenAllResult
 {
 public bool IsValidAddress { get; set; }
 public bool IsValidCredit { get; set; }
 public bool HasShoppingCart { get; set; }
 }

 public async Task<string> StartAsync()
 {
 var checkoutTasks =
 new List<Task<(string, bool)>>
 {
 ValidateAddressAsync(),
 ValidateCreditAsync(),
 GetShoppingCartAsync()
 };

 Task<(string method, bool result)[]> allTasks =
 Task.WhenAll(checkoutTasks);

 if (allTasks.IsCompletedSuccessfully)
 {
 WhenAllResult whenAllResult = GetResultsAsync(allTasks);

 await FinalizeCheckoutAsync(whenAllResult);

 return "Checkout Complete";
 }
 else
 {
 throw allTasks.Exception;
 }
 }

 WhenAllResult GetResultsAsync(
 Task<(string method, bool result)[]> allTasks)
 {
 var whenAllResult = new WhenAllResult();

198 | Chapter 6: Programming Asynchronously

 foreach (var (method, result) in allTasks.Result)
 switch (method)
 {
 case nameof(ValidateAddressAsync):
 whenAllResult.IsValidAddress = result;
 break;
 case nameof(ValidateCreditAsync):
 whenAllResult.IsValidCredit = result;
 break;
 case nameof(GetShoppingCartAsync):
 whenAllResult.HasShoppingCart = result;
 break;
 }

 return whenAllResult;
 }

 async Task<(string, bool)> ValidateAddressAsync()
 {
 //throw new ArgumentException("Testing!");

 return await Task.FromResult(
 (nameof(ValidateAddressAsync), true));
 }

 async Task<(string, bool)> ValidateCreditAsync()
 {
 return await Task.FromResult(
 (nameof(ValidateCreditAsync), true));
 }

 async Task<(string, bool)> GetShoppingCartAsync()
 {
 return await Task.FromResult(
 (nameof(GetShoppingCartAsync), true));
 }

 async Task<bool> FinalizeCheckoutAsync(WhenAllResult result)
 {
 Console.WriteLine(
 $"{nameof(WhenAllResult.IsValidAddress)}: " +
 $"{result.IsValidAddress}");
 Console.WriteLine(
 $"{nameof(WhenAllResult.IsValidCredit)}: " +
 $"{result.IsValidCredit}");
 Console.WriteLine(
 $"{nameof(WhenAllResult.HasShoppingCart)}: " +
 $"{result.HasShoppingCart}");

 bool success = true;
 return await Task.FromResult(success);

6.7 Waiting for Parallel Tasks to Complete | 199

 }
}

Here’s the app that requests and handles parallel task results:

static async Task Main()
{
 try
 {
 var checkoutSvc = new CheckoutService();

 string result = await checkoutSvc.StartAsync();

 Console.WriteLine($"Result: {result}");
 }
 catch (AggregateException aEx)
 {
 foreach (var ex in aEx.InnerExceptions)
 Console.WriteLine($"Unable to complete: {ex}");
 }
}

Discussion
When performing an action, such as shopping cart checkout, you don’t want the user
to wait too long for the app to return. Running too many operations sequentially can
make the wait longer. One of the ways to improve that user experience is to run inde‐
pendent operations concurrently.

In the solution, the CheckoutService has four different async services. Here we
assume that three of those operations, ValidateAddress Async, ValidateCredit
Async, and GetShoppingCartAsync, don’t have any dependencies on each other. This
makes them good candidates for running at the same time.

The StartAsync method does this by creating a List<Task>. If you recall, awaiting a
method is really an await on the returned Task. Without the await, each method
returns a Task, but its logic doesn’t run until that task is awaited.

The Task class has a WhenAll method, whose purpose is to run all of the tasks, speci‐
fied by the checkoutTasks argument, concurrently. WhenAll waits until all of the
Tasks complete before returning.

Awaiting a single method with a return type is straightforward from the perspective
that you assign the return value to a single variable. However, when running tasks
concurrently, you need to correlate responses because WhenAll returns all tasks at the
same time. Making an assumption about which tasks occur in which position of the
collection could be error prone and cumbersome in maintenance. The code needs to
know which response goes with which Task.

200 | Chapter 6: Programming Asynchronously

The solution does this via a tuple, where the string is the name of the method and
bool is the response. The tuple and choice of contents was specific for this demo, and
you would shape the task type in whatever way that makes sense for your app. This
lets us know which task goes with which result. The GetResultsAsync method does
this by iterating through the task array, and building the WhenAllResult, based on the
method parameter of each response.

Notice that the first line of ValidateAddressAsync is a commented statement that
throws an ArgumentException. Uncommenting and running the app again results in
an exception during the call to WhenAll. The Main method handles that exception
with a catch on AggregateException. Since all tasks are running concurrently, one
or more of them could throw an exception. The AggregateException collects those
exceptions. Normally, you would look in the InnerException property for exception
details. However, AggregateException has another property, InnerExceptions. The
difference is that the AggregateException property is plural, which is intentional.
For proper debugging, you can find all exceptions in the InnerExceptions property.

See Also
Recipe 6.8, “Handling Parallel Tasks as They Complete”

6.8 Handling Parallel Tasks as They Complete
Problem
You thought calling Task.WhenAny would be an efficient use of resources for process‐
ing results as they complete, but cost and performance are terrible.

Solution
This is a sequential implementation for calling multiple tasks:

public async Task<string> StartBigONAsync()
{
 (_, bool addressResult) = await ValidateAddressAsync();
 (_, bool creditResult) = await ValidateCreditAsync();
 (_, bool cartResult) = await GetShoppingCartAsync();

 await FinalizeCheckoutAsync(
 new AllTasksResult
 {
 IsValidAddress = addressResult,
 IsValidCredit = creditResult,
 HasShoppingCart = cartResult
 });

6.8 Handling Parallel Tasks as They Complete | 201

 return "Checkout Complete";
}

Here’s a parallel implementation for calling multiple tasks:

public async Task<string> StartBigO1Async()
{
 var checkoutTasks =
 new List<Task<(string, bool)>>
 {
 ValidateAddressAsync(),
 ValidateCreditAsync(),
 GetShoppingCartAsync()
 };

 Task<(string method, bool result)[]> allTasks =
 Task.WhenAll(checkoutTasks);

 if (allTasks.IsCompletedSuccessfully)
 {
 AllTasksResult allResult = GetResults(allTasks);

 await FinalizeCheckoutAsync(allResult);

 return "Checkout Complete";
 }
 else
 {
 throw allTasks.Exception;
 }
}

The next implementation processes tasks in parallel but handles each one as it
returns:

public async Task<string> StartBigONSquaredAsync()
{
 var checkoutTasks =
 new List<Task<(string, bool)>>
 {
 ValidateAddressAsync(),
 ValidateCreditAsync(),
 GetShoppingCartAsync()
 };

 var allResult = new AllTasksResult();

 while (checkoutTasks.Any())
 {
 Task<(string, bool)> task = await Task.WhenAny(checkoutTasks);
 checkoutTasks.Remove(task);

 GetResult(task, allResult);

202 | Chapter 6: Programming Asynchronously

 }

 await FinalizeCheckoutAsync(allResult);

 return "Checkout Complete";
}

This method shows how to get the first task that completes:

async Task<(string method, bool result)> ValidateCreditAsync()
{
 var checkoutTasks =
 new List<Task<(string, bool)>>
 {
 CheckInternalCreditAsync(),
 CheckAgency1CreditAsync(),
 CheckAgency2CreditAsync()
 };

 Task<(string, bool)> task = await Task.WhenAny(checkoutTasks);

 (_, bool result) = task.Result;

 return await Task.FromResult(
 (nameof(ValidateCreditAsync), result));
}

The Main method offers a choice of which method to start with:

static async Task Main()
{
 try
 {
 var checkoutSvc = new CheckoutService();

 string result = await checkoutSvc.StartBigO1Async();
 //string result = await checkoutSvc.StartBigONAsync();
 //string result = await checkoutSvc.StartBigONSquaredAsync();

 Console.WriteLine($"Result: {result}");
 }
 catch (AggregateException aEx)
 {
 foreach (var ex in aEx.InnerExceptions)
 Console.WriteLine($"Unable to complete: {ex}");
 }
}

6.8 Handling Parallel Tasks as They Complete | 203

Discussion
The problem in this section explores the role of Task.WhenAny. If you try to use
Task.WhenAny for processing tasks as they return, you might be surprised because it
doesn’t work the way you expect.

For the most part, the concept and organization of this solution operates similar to
Recipe 6.7—the difference being that this solution shows different ways to run tasks
and explains what you need to know to make the proper design decisions.

The StartBigONAsync method operates like previous sections of this chapter that ran
sequentially. Its performance is O(N) because it processes N tasks, one after the other.

Recipe 6.7 showed how to speed up program execution when tasks don’t depend on
each other. It uses Task.WhenAll, shown in StartBigO1Async. The performance
boost comes from its approximately O(1) performance—instead of performing N
operations, it does 1. To be more accurate, this is O(2) because FinalizeCheckout
Async runs after the other three complete.

In addition to Task.WhenAll, you can use Task.WhenAny. It might be natural to think
that Task.WhenAny is a good way to run multiple tasks in parallel and then be able to
process each task while the others are running. However, Task.WhenAny doesn’t work
the way you think it does. Look at StartBigONSquaredAsync and follow the following
logic:

1. The while loop iterates as long as checkoutTasks still has contents.
2. Task.WhenAny starts all of the tasks in parallel.
3. The fastest task returns.
4. Since that task returned, remove it from checkoutTasks so we don’t run it again.
5. Collect the results from that task.
6. Do the loop again on the remaining tasks or stop when checkoutTasks is empty.

The first surprising mental hurdle in this algorithm is incorrectly thinking that subse‐
quent loops operate on the same tasks, each returning as they complete. The reality is
that each subsequent loop starts a brand-new set of tasks. This is how async works—
you can await a task multiple times, but each await starts a new task. That means the
code continuously starts new instances of remaining tasks on every loop. This loop‐
ing pattern, with Task.WhenAny, doesn’t result in the O(1) performance you might
have expected, like with Task.WhenAll, but rather O(N2). This solution only has three
tasks, but imagine how performance would increasingly suffer as the task list grows.

204 | Chapter 6: Programming Asynchronously

This chapter discusses performance with Big O notation. Especially
when looking at algorithms that are O(N2), there’s a threshold of
when too many operations ruin performance. Recipe 3.10 shows
how to measure application performance and find what that thres‐
hold is, based on your performance requirements.

To pile on, take that number of tasks and multiply it by the number of checkout oper‐
ations that occur over a period of time. Not only would your application performance
be bad, you might slow down servers with excessive network traffic and endpoint
server processing. This might affect not only your own system, but other systems
running concurrently too. Also, think about times when those network requests
might be to cloud services on a consumption plan and how expensive that would get.
This particular use case might be considered an antipattern, unless it’s used with a
small number of tasks where the impact is minimal.

On the internet, you’ll find articles explaining Task.WhenAny as a
technique for running tasks in parallel and processing each as they
complete. While that might work for a few tasks, this section
explains the hazards of using Task.WhenAny for that use case.

That said, there is a use case where Task.WhenAny is effective—first task wins. In the
solution, there’s a ValidateCreditAsync method showing this strategy. The scenario
is that you have multiple sources to learn if a customer has good credit and a
response from any one of those sources is reliable. Each service has different perfor‐
mance characteristics and you’re only interested in the one that returns first. You can
discard the rest. This keeps performance at O(1).

ValidateCreditAsync has a list of tasks to run. Task.WhenAny runs those tasks in
parallel and the first task to complete comes back. The code processes that task and
returns.

The side effect in this solution is that tasks other than the first that returned continue
running. However, you don’t have access to them because only one task is returned.
For this scenario, you don’t care about those tasks but should stop them to avoid
using more resources than necessary. You can learn how to do that in the next section
on cancelling tasks.

See Also
Recipe 3.10, “Measuring Performance”

Recipe 6.7, “Waiting for Parallel Tasks to Complete”

Recipe 6.9, “Cancelling Async Operations”

6.8 Handling Parallel Tasks as They Complete | 205

6.9 Cancelling Async Operations
Problem
You have an async process in progress and need to stop it.

Solution
This class demonstrates multiple ways to cancel tasks:

public class CheckoutStream
{
 CancellationToken cancelToken;

 public CheckoutStream(CancellationToken cancelToken)
 {
 this.cancelToken = cancelToken;
 }

 public async IAsyncEnumerable<CheckoutRequest> GetRequestsAsync(
 IProgress<CheckoutRequestProgress> progress)
 {
 int total = 0;

 while (true)
 {
 var requests = new List<CheckoutRequest>();

 try
 {
 requests = await GetNextBatchAsync();
 }
 catch (OperationCanceledException)
 {
 break;
 }

 total += requests.Count;

 foreach (var request in requests)
 {
 if (cancelToken.IsCancellationRequested)
 break;

 yield return request;
 }

 progress.Report(
 new CheckoutRequestProgress
 {
 Total = total,

206 | Chapter 6: Programming Asynchronously

 Message = "New Batch of Checkout Requests"
 });

 if (cancelToken.IsCancellationRequested)
 break;

 await Task.Delay(1000);
 }

 if (cancelToken.IsCancellationRequested)
 progress.Report(
 new CheckoutRequestProgress
 {
 Total = total,
 Message = "Process Cancelled!"
 });
 }

 async Task<List<CheckoutRequest>> GetNextBatchAsync()
 {
 if (cancelToken.IsCancellationRequested)
 throw new OperationCanceledException();

 var requests = new List<CheckoutRequest>
 {
 new CheckoutRequest
 {
 ShoppingCartID = Guid.NewGuid(),
 Address = "123 4th St",
 Card = "1234 5678 9012 3456",
 Name = "First Card Name"
 },
 new CheckoutRequest
 {
 ShoppingCartID = Guid.NewGuid(),
 Address = "789 1st Ave",
 Card = "2345 6789 0123 4567",
 Name = "Second Card Name"
 },
 new CheckoutRequest
 {
 ShoppingCartID = Guid.NewGuid(),
 Address = "123 4th St",
 Card = "1234 5678 9012 3456",
 Name = "First Card Name"
 },
 };

 return await Task.FromResult(requests);
 }
}

6.9 Cancelling Async Operations | 207

Here’s the app that initializes cancellation and shows how to cancel:

static async Task Main()
{
 var cancelSource = new CancellationTokenSource();
 var checkoutStrm = new CheckoutStream(cancelSource.Token);
 var checkoutSvc = new CheckoutService();

 IProgress<CheckoutRequestProgress> progress =
 new Progress<CheckoutRequestProgress>(p =>
 {
 Console.WriteLine(
 $"\n" +
 $"Total: {p.Total}, " +
 $"{p.Message}" +
 $"\n");
 });

 int count = 1;

 await foreach (var request in
 checkoutStrm.GetRequestsAsync(progress))
 {
 string result = await checkoutSvc.StartAsync(request);

 Console.WriteLine($"Result: {result}");

 if (count++ >= 10)
 break;

 if (count >= 5)
 cancelSource.Cancel();
 }
}

Discussion
Recipe 6.3 has an async iterator with a while loop that never ends. That worked for a
demo, but real applications often need a way to stop long-running processes. Think
about a dialog that pops up with ongoing process status and offers a Cancel button,
allowing you to stop the operation. Task cancellation has been around since the intro‐
duction of TPL and is instrumental in cancelling async operations too.

In the solution, the Main method shows how to initialize cancellation. The Cancel
lationTokenSource, cancelSource, provides both tokens and control over cancella‐
tion. See how the parameter to the CheckoutStream constructor is a Cancellation
Token, set via the Token property from cancelSource.

Because cancelSource can manage cancellation for all the code in its scope, you can
pass a CancellationToken as a parameter to any constructors or methods with a

208 | Chapter 6: Programming Asynchronously

CancellationToken parameter, allowing you to cancel any operations from a single
place, cancelSource. The solution doesn’t have a button and cancels after processing
10 CheckoutRequests. You can see how that works with the count variable that’s
incremented in each loop, checks the number of requests, and breaks out of the loop
after 10. This program never gets to 10 because of the check on count >= 5, calling
cancelSource.Cancel().

The call to cancelSource.Cancel sends the message that the process should be can‐
celled, but you still have to write code that recognizes the need to cancel. It’s proper to
cancel as soon as possible, and GetRequestsAsync has several checks on cancelTo
ken.IsCancellationRequested. The IsCancellationRequested property is true
when Cancel is called on the CancellationTokenSource instance that passed the
CancelToken.

Inside the loop, IsCancellationRequested breaks. Outside the loop, IsCancella
tionRequested sends an IProgress<T> status message to let the caller know that the
operation was properly cancelled.

The GetNextBatchAsync method shows another way to handle cancellation, by
throwing an OperationCancelledException. If you recall, the reason a method
throws is because it is unable to complete the operation it was designed to do. In this
case, GetNextBatchAsync did not retrieve records, so this could be a semantically cor‐
rect way to respond. Even if this wasn’t a design decision that you would make, con‐
sider that GetNextBatchAsync might await another method, passing its cancelToken.
When cancelled, that awaited async method could throw OperationCancelled
Exception. Therefore, when handling cancellation, it’s safe to anticipate and handle
OperationCancelledException. The solution does this by wrapping the call to Get
NextBatchAsync in a try/catch, breaking the loop, and letting existing code report
the cancelled status to the caller.

Whenever cancelling an operation, you might also need to clean up resources. The
next section, Recipe 6.10, discusses how to do that.

See Also
Recipe 6.3, “Creating Async Iterators”

Recipe 6.10, “Disposing of Async Resources”

6.10 Disposing of Async Resources
Problem
You have an async process with resources that must be disposed.

6.10 Disposing of Async Resources | 209

Solution
This class shows how to properly implement the async dispose pattern:

public class CheckoutStream : IAsyncDisposable, IDisposable
{
 CancellationTokenSource cancelSource = new CancellationTokenSource();
 CancellationToken cancelToken;
 ILogger log = new ConsoleLogger();

 FileStream asyncDisposeObj = new FileStream(
 "MyFile.txt", FileMode.OpenOrCreate, FileAccess.Write);
 HttpClient syncDisposeObj = new HttpClient();

 public CheckoutStream()
 {
 this.cancelToken = cancelSource.Token;
 }

 public async IAsyncEnumerable<CheckoutRequest> GetRequestsAsync(
 IProgress<CheckoutRequestProgress> progress)
 {
 int total = 0;

 while (true)
 {
 var requests = new List<CheckoutRequest>();

 try
 {
 requests = await GetNextBatchAsync();
 }
 catch (OperationCanceledException)
 {
 break;
 }

 total += requests.Count;

 foreach (var request in requests)
 {
 if (cancelToken.IsCancellationRequested)
 break;

 yield return request;
 }

 progress.Report(
 new CheckoutRequestProgress
 {
 Total = total,
 Message = "New Batch of Checkout Requests"

210 | Chapter 6: Programming Asynchronously

 });

 if (cancelToken.IsCancellationRequested)
 break;

 await Task.Delay(1000);
 }
 }

 async Task<List<CheckoutRequest>> GetNextBatchAsync()
 {
 if (cancelToken.IsCancellationRequested)
 throw new OperationCanceledException();

 var requests = new List<CheckoutRequest>
 {
 new CheckoutRequest
 {
 ShoppingCartID = Guid.NewGuid(),
 Address = "123 4th St",
 Card = "1234 5678 9012 3456",
 Name = "First Card Name"
 },
 new CheckoutRequest
 {
 ShoppingCartID = Guid.NewGuid(),
 Address = "789 1st Ave",
 Card = "2345 6789 0123 4567",
 Name = "Second Card Name"
 },
 new CheckoutRequest
 {
 ShoppingCartID = Guid.NewGuid(),
 Address = "123 4th St",
 Card = "1234 5678 9012 3456",
 Name = "First Card Name"
 },
 };

 return await Task.FromResult(requests);
 }

 public async ValueTask DisposeAsync()
 {
 await DisposeAsyncCore();

 Dispose(disposing: false);
 GC.SuppressFinalize(this);
 }

 public void Dispose()

6.10 Disposing of Async Resources | 211

 {
 Dispose(disposing: true);
 GC.SuppressFinalize(this);
 }

 protected virtual void Dispose(bool disposing)
 {
 if (disposing)
 {
 syncDisposeObj?.Dispose();
 (asyncDisposeObj as IDisposable)?.Dispose();
 }

 DisposeThisObject();
 }

 protected virtual async ValueTask DisposeAsyncCore()
 {
 if (asyncDisposeObj is not null)
 {
 await asyncDisposeObj.DisposeAsync().ConfigureAwait(false);
 }

 if (syncDisposeObj is IAsyncDisposable disposable)
 {
 await disposable.DisposeAsync().ConfigureAwait(false);
 }
 else
 {
 syncDisposeObj.Dispose();
 }

 DisposeThisObject();

 await log.WriteAsync("\n\nDisposed!");
 }

 void DisposeThisObject()
 {
 cancelSource.Cancel();

 asyncDisposeObj = null;
 syncDisposeObj = null;
 }
}

Here’s the app that demonstrates how to use an async disposable object:

static async Task Main()
{
 await using var checkoutStrm = new CheckoutStream();

 var checkoutSvc = new CheckoutService();

212 | Chapter 6: Programming Asynchronously

 IProgress<CheckoutRequestProgress> progress =
 new Progress<CheckoutRequestProgress>(p =>
 {
 Console.WriteLine(
 $"\n" +
 $"Total: {p.Total}, " +
 $"{p.Message}" +
 $"\n");
 });

 int count = 1;

 await foreach (var request in
 checkoutStrm.GetRequestsAsync(progress))
 {
 string result = await checkoutSvc.StartAsync(request);

 Console.WriteLine($"Result: {result}");

 if (count++ >= 10)
 break;
 }
}

Discussion
Recipe 1.1 describes the dispose pattern and how it solves the problem of releasing
resources when an object lifetime ends. That works well for synchronous code but
not for asynchronous code. This section shows how to dispose of async resources
with the async dispose pattern.

In the solution, CheckoutStream has two fields: a FileStream, asyncDisposeObj, and
an HttpClient, syncDisposeObj. Normally these would have names representing
their purpose in the application, but in this instance, their names represent how
they’re used in the solution to help follow a complex set of logic. As their names
suggest, asyncDisposeObj references a resource that must be disposed of asynchro‐
nously; syncDisposeObj references a resource that must be disposed of synchro‐
nously. It’s important to think about both asynchronous and synchronous disposal at
the same time, because it explains why their disposal processes are now intertwined.

For asynchronous and synchronous disposal, CheckoutService implements IAsync
Disposable and IDisposable, respectively. As discussed in Recipe 1.1, IDisposable
specifies that classes must implement Dispose, with no parameters, and we add a vir‐
tual Dispose(bool), with a bool parameter, and an optional destructor to implement
the pattern. The solution doesn’t implement the optional destructor. For IAsyncDis
posable, CheckoutService implements the required DisposeAsync method and a
virtual DisposeAsyncCore method, neither of which have parameters.

6.10 Disposing of Async Resources | 213

Both disposal paths, asynchronous and synchronous, could run, so they both must be
prepared to release resources. On the synchronous path, Dispose(bool) not only
calls Dispose on syncDisposeObj, but also attempts to call Dispose on asyncDispo
seObj. Notice that Dispose(bool) also calls DisposeThisObject, which holds the
same code that the asynchronous path needs to call too—it reduces duplication.

While Dispose and DisposeAsync are interface members, Dispose(bool) and Dispo
seAsyncCore are conventions. Also notice that they’re both virtual. This is part of
the pattern, where derived classes can implement disposal by overriding these meth‐
ods and calling them, via base.Dispose(bool) and base.DisposeAsyncCore, to
ensure release of resources up the entire inheritance hierarchy.

Both Dispose and DisposeAsync call Dispose(bool), but DisposeAsync sets the dis
posing argument to false. If you recall, disposing is a flag for Dispose(bool) to
release managed resources when set to true. Remember that Dispose(bool) is the
synchronous path. Instead, DisposeAsync calls DisposeAsyncCore to release asyn‐
chronous resources.

As with Dispose(true), DisposeAsyncCore attempts to release all managed resour‐
ces. The async case is obvious. However, synchronous objects have a couple of possi‐
bilities. What if the synchronous object, now or in the future, implements IAsyncDis
posable? Then, attempting to call DisposeAsync is the better choice when the code is
on the asynchronous path. Otherwise, call the synchronous path, with Dispose.

As mentioned, both Dispose(bool) and DisposeAsyncCore call DisposeThisObject.
In the solution scenario, the GetRequestsAsync iterator implements cancellation, as
explained in Recipe 6.9. Depending on the situation, it might be good to cancel dur‐
ing the dispose process. For instance, what if the code needs to persist its latest good
state or has a closure protocol with a network endpoint? It’s good to think through
your situation, and the dispose and async dispose patterns can help.

Finally, notice how the Main method awaits a using statement on the CheckoutStream
instance. This is the same using statement discussed in Recipe 2.2, except that now it
has an await. This ensures the code calls DisposeAsync at the end of the Main
method.

See Also
Recipe 1.1, “Managing Object End-of-Lifetime”

Recipe 2.2, “Simplifying Instance Cleanup”

Recipe 6.9, “Cancelling Async Operations”

214 | Chapter 6: Programming Asynchronously

CHAPTER 7

Manipulating Data

Every application uses data, and we need to manipulate that data from one form to
another. This chapter offers several topics on data transformation in areas such as
secret management, JSON serialization, and XML serialization.

Secrets are data, such as passwords or API keys, that we don’t want to expose to third
parties. This chapter has three sections on managing secrets for hashing, encryption,
and hidden storage.

Much of the data we work with today is in JSON format. Basic serialization/deseriali‐
zation is simple in modern frameworks, and it’s even simpler when you own both the
data consumer and provider. When consuming third-party data, you don’t have con‐
trol over that data’s consistency or standards. That’s why the JSON sections of this
chapter drill down on customizations to help you handle JSON in whatever format
you need.

Finally, although JSON has a dominant place among internet data formats today,
there’s still plenty of XML data to work with, which is the subject of the XML sec‐
tions. You’ll see another flavor of LINQ, called LINQ to XML, which gives you full
control over the serialization/deserialization process.

7.1 Generating Password Hashes
Problem
You need to securely store user passwords.

215

Solution
This method generates a random salt to protect secrets:

static byte[] GenerateSalt()
{
 const int SaltLength = 64;

 byte[] salt = new byte[SaltLength];
 var rngRand = new RNGCryptoServiceProvider();

 rngRand.GetBytes(salt);

 return salt;
}

The next two methods use that salt to generate hashes:

static byte[] GenerateMD5Hash(string password, byte[] salt)
{
 byte[] passwordBytes = Encoding.UTF8.GetBytes(password);

 byte[] saltedPassword =
 new byte[salt.Length + passwordBytes.Length];

 using var hash = new MD5CryptoServiceProvider();

 return hash.ComputeHash(saltedPassword);
}

static byte[] GenerateSha256Hash(string password, byte[] salt)
{
 byte[] passwordBytes = Encoding.UTF8.GetBytes(password);

 byte[] saltedPassword =
 new byte[salt.Length + passwordBytes.Length];

 using var hash = new SHA256CryptoServiceProvider();

 return hash.ComputeHash(saltedPassword);
}

And here’s how to use the methods to generate hashes:

static void Main(string[] args)
{
 Console.WriteLine("\nPassword Hash Demo\n");

 Console.Write("What is your password? ");
 string password = Console.ReadLine();

 byte[] salt = GenerateSalt();

 byte[] md5Hash = GenerateMD5Hash(password, salt);

216 | Chapter 7: Manipulating Data

 string md5HashString = Convert.ToBase64String(md5Hash);
 Console.WriteLine($"\nMD5: {md5HashString}");

 byte[] sha256Hash = GenerateSha256Hash(password, salt);
 string sha256HashString = Convert.ToBase64String(sha256Hash);
 Console.WriteLine($"\nSHA256: {sha256HashString}");
}

Discussion
ASP.NET identity has nice support for password and group/role management, which
should be on anyone’s list of considerations when planning a new project. However,
there are a lot of situations where ASP.NET identity won’t be the best option, for
instance, when you have to use a database that ASP.NET identity doesn’t support or
must use an existing database with its own homegrown password management.

When building a custom password management solution, best practice is to hash the
password with a salt. A hash is a one-way translation of a password to a string of
unintelligible characters. Every time you hash a specific password, you always get the
same hash. That said, an important difference from encryption is that you can’t
decrypt a hash—there’s no way to translate a hash back into the original password.
That begs the question of how to know if the user enters the correct password. Since
this is a book on C#, database development is out of scope. That said, here are the
steps required to verify a password:

1. When you create the user account, hash the password and store the hash in the
database with the username.

2. When the user logs in, they provide the username and password.
3. With the username, your code makes a database query and retrieves the match‐

ing hash.
4. Hash the password the user entered.
5. Compare the hashed passwords.
6. If the password hashes match, validation succeeds—otherwise validation fails.

Security is a constant game of cat and mouse. As soon as we learned to protect pass‐
words with hashes, hackers looked for ways to break through that. Ultimately, the
best we can do is to find a level of security that makes it prohibitively expensive for
hackers, based on our need to protect the information compared to the hacker’s
desire to obtain it. How much security can you afford?

Fortunately, there’s an easy way to beef up password security. A security best practice
around hashed passwords is to include a salt, a random array of bytes appended to a
password. We save the salt in the database, along with the username and password.
This is effective in protecting against a rainbow attack, described in the note. The

7.1 Generating Password Hashes | 217

GenerateSalt method in the solution produces a random 64-byte value. The salt pre‐
vents a rainbow attack and forces the hacker to drop down to a dictionary attack,
which is much more compute-intensive.

If a hacker breaks into your system or figures out how to get a copy
of the table holding passwords, there are a couple of common
attacks: dictionary and rainbow.
In a dictionary attack, the hacker has a dictionary of words and
phrases and iterates through that list, hashing each item and com‐
paring to the database table. For all the complexity rules and the
number of people who follow them, there are always some people
that use single-word passwords. Spoiler alert: for all the people who
think they’re clever with the symbol/number character replace‐
ments—that doesn’t work; the hacker’s dictionaries and algorithms
already account for that.
The rainbow attack is another variation of the dictionary attack,
and the difference is that the rainbow attack already hashed com‐
mon words, so all they need is a simple comparison to move
through the password table quicker.

Both the GenerateMD5Hash and GenerateSha256 hash methods accept a password
and a salt. Both methods translate the password into a byte[], concatenate the pass‐
word and hash, and generate a hash. The syntactic difference between the MD5 and
SHA256 implementations is the MD5CryptoServiceProvider versus the SHA256
CryptoServiceProvider, respectively.

In practice, there are different reasons to use specific hash algorithms. The .NET
Framework has several hash algorithms, which you can find by looking up HashAlgor
ithm and examining its derived classes. Many recent implementations use the
SHA256 hash because it provides better protection than earlier hash algorithms. I
included the MD5 algorithm to make the point that you don’t always have the luxury
of selecting the algorithm because the password table might have already been created
using MD5. In this case, the inconvenience to users might preclude the need for them
to reenter passwords to accommodate another hash algorithm.

The Main method demonstrates how to use these algorithms to generate hashes. An
interesting bit here is calling Convert.ToBase64String. Anytime you’re moving data
from one place to another, the transport mechanism has a protocol and format based
on special characters. If the characters in the hashed bytes translate into special char‐
acters during transport, the software will break. A standard way to work around this
is to use a data format known as Base64, which generates characters that won’t con‐
flict with special data format or transport protocol characters.

218 | Chapter 7: Manipulating Data

7.2 Encrypting and Decrypting Secrets
Problem
You have API keys that need to be encrypted at rest.

Solution
This class encrypts and decrypts secrets:

public class Crypto
{
 public byte[] Encrypt(string plainText, byte[] key)
 {
 using Aes aes = Aes.Create();
 aes.Key = key;

 using var memStream = new MemoryStream();
 memStream.Write(aes.IV, 0, aes.IV.Length);

 using var cryptoStream = new CryptoStream(
 memStream,
 aes.CreateEncryptor(),
 CryptoStreamMode.Write);

 byte[] plainTextBytes = Encoding.UTF8.GetBytes(plainText);

 cryptoStream.Write(plainTextBytes);
 cryptoStream.FlushFinalBlock();

 memStream.Position = 0;

 return memStream.ToArray();
 }

 public string Decrypt(byte[] cypherBytes, byte[] key)
 {
 using var memStream = new MemoryStream();
 memStream.Write(cypherBytes);
 memStream.Position = 0;

 using var aes = Aes.Create();

 byte[] iv = new byte[aes.IV.Length];
 memStream.Read(iv, 0, iv.Length);

 using var cryptoStream = new CryptoStream(
 memStream,
 aes.CreateDecryptor(key, iv),
 CryptoStreamMode.Read);

7.2 Encrypting and Decrypting Secrets | 219

 int plainTextByteLength = cypherBytes.Length - iv.Length;
 var plainTextBytes = new byte[plainTextByteLength];
 cryptoStream.Read(plainTextBytes, 0, plainTextByteLength);

 return Encoding.UTF8.GetString(plainTextBytes);
 }
}

Here’s a method that generates a random key:

static byte[] GenerateKey()
{
 const int KeyLength = 32;

 byte[] key = new byte[KeyLength];
 var rngRand = new RNGCryptoServiceProvider();

 rngRand.GetBytes(key);

 return key;
}

Here’s how to use the Crypto class and a random key to encrypt and decrypt secrets:

static void Main()
{
 var crypto = new Crypto();

 Console.Write("Please enter text to encrypt: ");
 string userPlainText = Console.ReadLine();

 byte[] key = GenerateKey();

 byte[] cypherBytes = crypto.Encrypt(userPlainText, key);

 string cypherText = Convert.ToBase64String(cypherBytes);

 Console.WriteLine($"Cypher Text: {cypherText}");

 string decryptedPlainText = crypto.Decrypt(cypherBytes, key);

 Console.WriteLine($"Plain Text: {decryptedPlainText}");
}

Discussion
We often have secrets—API keys or other sensitive information—to protect. Encryp‐
tion is how we protect information at rest. Before saving, we encrypt the data, and
after retrieving the encrypted data, we decrypt it for use.

In the solution, the Crypto class has methods to encrypt and decrypt data. The key
parameter is a secret value used by the encryption/decryption algorithms. We’ll be

220 | Chapter 7: Manipulating Data

using a technique called symmetric key encryption, where we use a single key to
encrypt/decrypt all the data. Clearly, you don’t store the encryption key in the same
place as the data because if a hacker is able to read the data, they would also need to
figure out where the encryption key is. In this demo, the GenerateKey method pro‐
duces a random 32-bit key, required by the crypto provider.

The crypto provider is the code that uses a special algorithm to encrypt/decrypt data.
The solution example uses Advanced Encryption Standard (AES), which is a modern
and secure encryption algorithm.

When saving the data, you pass the plainText string, along with the key, into the
Encrypt method. Calling AES.Create returns an instance of AES. The value stored in
the database is the concatenated initialization vector (IV) and encrypted text. Notice
how the memStream first loads the IV from the AES instance.

The three arguments to CryptoStream are the memStream (containing the IV), an
ICryptoTransform (returned by the call to AES.CreateEncryptor), and a Crypto
StreamMode (indicating that we’re writing to the stream). The cryptoStream instance
will append encrypted bytes to the IV in memStream. We’re working with byte[]
representations of the data, including plainText. Calling Write on cryptoStream
performs the encryption, and calling FlushFinalBlock ensures all the bytes are pro‐
cessed and pushed into memStream.

The Decrypt method reverses this process. In addition to the key, which is the same
key used to encrypt, there’s a cypherBytes parameter. If you recall from the Encrypt
process, the encrypted value includes both the IV and the appended encrypted value,
and these are the contents of cypherBytes. After loading memStream with cypher
Bytes, the code repositions memStream to the beginning and extracts the IV into iv.
This leaves the memStream positioned at iv.Length, where the encrypted value
begins.

This time, cryptoStream uses the encrypted text (memStream positioned appropri‐
ately). Here, ICryptoTransform is different because we call CreateDecryptor with iv
and key. Also, the CryptoStreamMode needs to be Read. Calling Read on crypto
Stream performs the decryption.

The Main method shows how to use the Encrypt and Decrypt methods. Notice that it
uses the same key for both. The Convert.ToBase64String ensures we can work with
the data without random bytes being interpreted in unexpected ways. For instance, if
you print a binary file to the console, you might hear dings because some of the bytes
were interpreted as bell characters. Also, when transporting data, Base64 helps avoid
bytes being interpreted as transport protocol or formatting characters, which breaks
code.

7.2 Encrypting and Decrypting Secrets | 221

7.3 Hiding Development Secrets
Problem
You need to avoid accidentally checking secrets, like passwords and API keys, into
source control.

Solution
Here’s the project file:

<Project Sdk="Microsoft.NET.Sdk">
 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>net5.0</TargetFramework>
 <RootNamespace>Section_07_03</RootNamespace>
 <UserSecretsId>d3d91a8b-d440-414a-821e-7f11eec48f32</UserSecretsId>
 </PropertyGroup>

 <ItemGroup>
 <PackageReference
 Include="Microsoft.Extensions.Hosting" Version="5.0.0" />
 </ItemGroup>
</Project>

This code shows how easy it is to add code supporting hidden secrets:

class Program
{
 static void Main()
 {
 var config = new ConfigurationBuilder()
 .AddUserSecrets<Program>()
 .Build();

 string key = "CSharpCookbook:ApiKey";
 Console.WriteLine($"{key}: {config[key]}");
 }
}

Discussion
This is so common, where developers accidentally check database connection strings
from configuration files into source control. Another frequent issue is when a devel‐
oper needs help in an online forum and accidentally leaves secrets in their code sam‐
ple. Hopefully, it’s clear that these mistakes have the potential for grave damage to an
application or even a business.

One solution for this is to use the Secret Manager. While the Secret Manager is nor‐
mally associated with ASP.NET because of built-in configuration support, you can

222 | Chapter 7: Manipulating Data

use it with any type of application. The solution shows how easy it is to use the secret
manager with a console application.

This is a feature that’s useful for working in a development envi‐
ronment. In production, you would want to use a more secure
option, for instance, Key Vault if you were deploying to Azure.
Holding secrets in environment variables is another way to avoid
storing them in code or configuration.
Some project types, such as ASP.NET already have support for
ensuring you don’t accidentally put development code in produc‐
tion, like this:

if (env.IsDevelopment())
{
 config.AddUserSecrets<Program>();
}

You can set up an application to use Secret Manager with the dotnet CLI. The first
thing is to update the project by typing this on the command line:

dotnet user-secrets init

That adds a UserSecretsID tag to the project file, as previously shown. That GUID
identifies the location in your file system where the secrets are stored. In this exam‐
ple, that location is:

%APPDATA%\Microsoft\UserSecrets\d3d91a8b-d440-414a-821e-7f11eec48f32
\secrets.json

on Windows or:

~/.microsoft/usersecrets/d3d91a8b-d440-414a-821e-7f11eec48f32
/secrets.json

for Linux or macOS machines.

After setting up, you can start adding secrets, like this (in the same location as the
project folder):

dotnet user-secrets set "CSharpCookbook:ApiKey" "mYaPIsECRET"

You can verify that the secret was saved by looking at secrets.json or the following
command:

dotnet user-secrets list

The Main method shows how to read Secret Manager keys. Remember to reference
the Microsoft.Extensions.Hosting NuGet package. Just call AddUserSecrets on a
new ConfigurationBuilder. Calling Build on that returns an IConfigurationRoot
instance that provides indexer support for reading keys.

7.3 Hiding Development Secrets | 223

7.4 Producing JSON
Problem
You need to customize JSON output formatting.

Solution
This code shows what a PurchaseOrder looks like:

public enum PurchaseOrderStatus
{
 Received,
 Processing,
 Fulfilled
}

public class PurchaseItem
{
 [JsonPropertyName("serialNo")]
 public string SerialNumber { get; set; }

 [JsonPropertyName("description")]
 public string Description { get; set; }

 [JsonPropertyName("qty")]
 public float Quantity { get; set; }

 [JsonPropertyName("amount")]
 public decimal Price { get; set; }
}

public class PurchaseOrder
{
 [JsonPropertyName("company")]
 public string CompanyName { get; set; }
 [JsonPropertyName("address")]
 public string Address { get; set; }
 [JsonPropertyName("phone")]
 public string Phone { get; set; }

 [JsonPropertyName("status")]
 public PurchaseOrderStatus Status { get; set; }

 [JsonPropertyName("other")]
 public Dictionary<string, string> AdditionalInfo { get; set; }

 [JsonPropertyName("details")]
 public List<PurchaseItem> Items { get; set; }
}

224 | Chapter 7: Manipulating Data

This code serializes a PurchaseOrder:

public class PurchaseOrderService
{
 public void View(PurchaseOrder po)
 {
 var jsonOptions = new JsonSerializerOptions
 {
 WriteIndented = true
 };

 string poJson = JsonSerializer.Serialize(po, jsonOptions);

 // send HTTP request

 Console.WriteLine(poJson);
 }
}

Here’s how to populate a PurchaseOrder:

static PurchaseOrder GetPurchaseOrder()
{
 return new PurchaseOrder
 {
 CompanyName = "Acme, Inc.",
 Address = "123 4th St.",
 Phone = "555-835-7609",
 AdditionalInfo = new Dictionary<string, string>
 {
 { "terms", "Net 30" },
 { "poc", "J. Smith" }
 },
 Items = new List<PurchaseItem>
 {
 new PurchaseItem
 {
 Description = "Widget",
 Price = 13.95m,
 Quantity = 5,
 SerialNumber = "123"
 }
 }
 };
}

The Main method drives the process:

static void Main()
{
 PurchaseOrder po = GetPurchaseOrder();
 new PurchaseOrderService().View(po);
}

7.4 Producing JSON | 225

And here’s the output:

{
 "company": "Acme, Inc.",
 "address": "123 4th St.",
 "phone": "555-835-7609",
 "status": 0,
 "other": {
 "terms": "Net 30",
 "poc": "J. Smith"
 },
 "details": [
 {
 "serialNo": "123",
 "description": "Widget",
 "qty": 5,
 "amount": 13.95
 }
]
}

Discussion
Just calling JsonSerializer.Serialize, from the System.Text.Json namespace, is a
simple and quick way to serialize objects into JSON. If you own the producing and
consuming parts of an application, this might be the way to go for simplicity and
speed. However, it’s often the case that you’re consuming a third-party API that speci‐
fies its own JSON data format. Additionally, its naming convention won’t match C#
Pascal-cased property names. This section shows how to perform those serializer out‐
put customizations.

Microsoft introduced the System.Text.Json namespace in .NET
Core 3. Previously, a popular choice was the excellently supported
Newtonsoft.Json library.

In the solution scenario, we want to send a JSON document to an API, but the prop‐
erty names don’t match. That’s why PurchaseOrder (and supporting types) decorates
properties with the JsonPropertyName attribute. The JsonSerializer uses JsonPro
pertyName to specify the output property name.

The PurchaseOrderService has a View method that serializes a PurchaseOrder. By
default, the serializer output is a single line and we want to see formatted output. The
code uses a JsonSerializerOption, with WriteIndented set to true, producing the
output shown in the solution.

226 | Chapter 7: Manipulating Data

The Main method drives the process, getting a new PurchaseOrder and then calling
View to print out the results.

Sometimes, APIs grow organically and their naming conventions lack consistency,
making this the ideal approach to customizing output. However, if you are using an
API with a consistent naming convention, Recipe 7.5 explains how to build a con‐
verter to avoid decorating every property with JsonPropertyName.

See Also
Recipe 7.5, “Consuming JSON”

7.5 Consuming JSON
Problem
You need to read a JSON object that doesn’t fit default deserialization options.

Solution
Here’s what a PurchaseOrder looks like:

public enum PurchaseOrderStatus
{
 Received,
 Processing,
 Fulfilled
}

public class PurchaseItem
{
 public string SerialNumber { get; set; }

 public string Description { get; set; }

 public float Quantity { get; set; }

 public decimal Price { get; set; }
}

public class PurchaseOrder
{
 public string CompanyName { get; set; }
 public string Address { get; set; }
 public string Phone { get; set; }

 [JsonConverter(typeof(PurchaseOrderStatusConverter))]
 public PurchaseOrderStatus Status { get; set; }

7.5 Consuming JSON | 227

 public Dictionary<string, string> AdditionalInfo { get; set; }

 public List<PurchaseItem> Items { get; set; }
}

Here’s a custom JsonConverter class:

public class PurchaseOrderStatusConverter
 : JsonConverter<PurchaseOrderStatus>
{
 public override PurchaseOrderStatus Read(
 ref Utf8JsonReader reader,
 Type typeToConvert,
 JsonSerializerOptions options)
 {
 string statusString = reader.GetString();

 if (Enum.TryParse(
 statusString,
 out PurchaseOrderStatus status))
 {
 return status;
 }
 else
 {
 throw new JsonException(
 $"{statusString} is not a valid " +
 $"{nameof(PurchaseOrderStatus)} value.");
 }
 }

 public override void Write(
 Utf8JsonWriter writer,
 PurchaseOrderStatus value,
 JsonSerializerOptions options)
 {
 writer.WriteStringValue(value.ToString());
 }
}

This is a custom JSON naming policy:

public class SnakeCaseNamingPolicy : JsonNamingPolicy
{
 public override string ConvertName(string name)
 {
 var targetChars = new List<char>();
 char[] sourceChars = name.ToCharArray();

 char first = sourceChars[0];
 if (char.IsUpper(first))
 targetChars.Add(char.ToLower(first));
 else

228 | Chapter 7: Manipulating Data

 targetChars.Add(first);

 for (int i = 1; i < sourceChars.Length; i++)
 {
 char ch = sourceChars[i];

 if (char.IsUpper(ch))
 {
 targetChars.Add('_');
 targetChars.Add(char.ToLower(ch));
 }
 else
 {
 targetChars.Add(ch);
 }
 }

 return new string(targetChars.ToArray());
 }
}

This class simulates a request, returning JSON formatted data:

public class PurchaseOrderService
{
 public string Get(int poID)
 {
 // get HTTP request

 return @"{
""company_name"": ""Acme, Inc."",
""address"": ""123 4th St."",
""phone"": ""555-835-7609"",
""additional_info"": {
 ""terms"": ""Net 30"",
 ""poc"": ""J. Smith"",
},
""status"": ""Processing"",
""items"": [
 {
 ""serial_number"": ""123"",
 ""description"": ""Widget"",
 ""quantity"": 5,
 ""price"": 13.95
 }
]
}";
 }
}

7.5 Consuming JSON | 229

The Main method shows how to use custom converters, options, and policies:

static void Main()
{
 string poJson =
 new PurchaseOrderService()
 .Get(poID: 123);

 var jsonOptions = new JsonSerializerOptions
 {
 AllowTrailingCommas = true,
 Converters =
 {
 new PurchaseOrderStatusConverter()
 },
 PropertyNameCaseInsensitive = true,
 PropertyNamingPolicy = new SnakeCaseNamingPolicy(),
 WriteIndented = true
 };

 PurchaseOrder po =
 JsonSerializer
 .Deserialize<PurchaseOrder>(poJson, jsonOptions);

 Console.WriteLine($"{po.CompanyName}");
 Console.WriteLine($"{po.AdditionalInfo["terms"]}");
 Console.WriteLine($"{po.Items[0].Description}");

 string poJson2 = JsonSerializer.Serialize(po, jsonOptions);

 Console.WriteLine(poJson2);
}

And here’s the output:

Acme, Inc.
Net 30
Widget
{
 "company_name": "Acme, Inc.",
 "address": "123 4th St.",
 "phone": "555-835-7609",
 "status": "Processing",
 "additional_info": {
 "terms": "Net 30",
 "poc": "J. Smith"
 },
 "items": [
 {
 "serial_number": "123",
 "description": "Widget",
 "quantity": 5,
 "price": 13.95

230 | Chapter 7: Manipulating Data

 }
]
}

Discussion
JsonSerializer has a built-in converter for producing camel case property names,
via JsonInitializerOptions, like this:

var serializeOptions = new JsonSerializerOptions
{
 PropertyNamingPolicy = JsonNamingPolicy.CamelCase
};

That handles a lot of scenarios, but what if a third-party API didn’t use Pascal case or
camel case property names? This solution includes support for property names that
are snake case, where words are divided by an underscore. For instance, SnakeCase
becomes snake_case. In addition to a new naming policy, the solution also includes
other customizations, including enum support.

Notice that PurchaseOrder doesn’t decorate any properties with JsonPropertyName.
Instead, we use a custom naming policy, defined in the SnakeCaseNamingPolicy
class, which derives from JsonNamingPolicy. The algorithm in ConvertName assumes
that it has received a Pascal case property name. It iterates through characters, look‐
ing for an uppercase character. When encountering an uppercase character it
appends an underscore, _, lowercases the letter, and appends the lowercase of the let‐
ter into the results. Otherwise, it appends the character, which is already lowercase.

The Main method instantiates a JsonSerializerOptions, setting PropertyNaming
Policy to an instance of SnakeCaseNamingPolicy. This applies the naming policy to
all property names, producing snake case property names.

As with many situations, you might encounter an exception to the
rule, where a JSON property doesn’t conform to snake case rules.
In that situation, use a JsonPropertyName attribute, as described in
Recipe 7.4, to that property, which overrides the naming policy.

You might have noticed that JsonSerializerOptions, in Main, has other customiza‐
tions. The AllowTrailingCommas is interesting because sometimes you receive JSON
data containing a list, where the last item in the list has a trailing comma. This breaks
deserialization, and setting AllowTrailingCommas to true ignores the trailing
comma.

PropertyNameCaseInsensitive is an alternative that doesn’t consider the property
name format. It allows lowercase property names to match their uppercase equivalent

7.5 Consuming JSON | 231

when deserializing. It’s useful when the incoming JSON property names might not be
consistent in casing.

By default, JsonSerializer produces a single-line JSON document. Setting Write
Indented formats the text for readability, as shown in the output.

One of the properties, Converters, is a collection of types that do custom conversions
on properties. The PurchaseOrderStatusConverter, which derives from Json
Converter<T>, allows deserialization of the Status property to the PurchaseOrder
Status enum. There are two ways to apply this: in JsonSerialization options or via
attribute. Adding a converter to the JsonSerializationOptions Converter collec‐
tion applies the conversion for all PurchaseOrderStatus property types. Also, the
PurchaseOrder class decorates the Status property with a JsonConverter attribute. I
added both methods in the solution so you could see how each of them work. Adding
to the Converters collection is sufficient. However, if you wanted to apply a different
converter to a specific property or needed different converters for different proper‐
ties, then use the JsonConverter attribute, because it has precedence over the
Converters collection.

The Main method shows how to use the same JsonSerializationOptions for both
deserialization and serialization.

See Also
Recipe 7.4, “Producing JSON”

7.6 Working with JSON Data
Problem
You received JSON data that doesn’t cleanly deserialize into an object.

Solution
Here’s what a PurchaseOrder looks like:

public enum PurchaseOrderStatus
{
 Received,
 Processing,
 Fulfilled
}

public class PurchaseItem
{
 public string SerialNumber { get; set; }

232 | Chapter 7: Manipulating Data

 public string Description { get; set; }

 public double Quantity { get; set; }

 public decimal Price { get; set; }
}

public class PurchaseOrder
{
 public string CompanyName { get; set; }
 public string Address { get; set; }
 public string Phone { get; set; }
 public string Terms { get; set; }
 public string POC { get; set; }

 public PurchaseOrderStatus Status { get; set; }

 public Dictionary<string, string> AdditionalInfo { get; set; }

 public List<PurchaseItem> Items { get; set; }
}

This class simulates a request that returns JSON data:

public class PurchaseOrderService
{
 public string Get(int poID)
 {
 // get HTTP request

 return @"{
""company_name"": ""Acme, Inc."",
""address"": ""123 4th St."",
""phone"": ""555-835-7609"",
""additional_info"": {
 ""terms"": ""Net 30"",
 ""poc"": ""J. Smith""
},
""status"": ""Processing"",
""items"": [
 {
 ""serial_number"": ""123"",
 ""description"": ""Widget"",
 ""quantity"": 5,
 ""price"": 13.95
 }
]
}";
 }
}

7.6 Working with JSON Data | 233

Here’s a class that supports custom deserialization:

public static class JsonConversionExtensions
{
 public static bool IsNull(this JsonElement json)
 {
 return
 json.ValueKind == JsonValueKind.Undefined ||
 json.ValueKind == JsonValueKind.Null;
 }

 public static string GetString(
 this JsonElement json,
 string propertyName,
 string defaultValue = default)
 {
 if (!json.IsNull() &&
 json.TryGetProperty(propertyName, out JsonElement element))
 return element.GetString() ?? defaultValue;

 return defaultValue;
 }

 public static int GetInt(
 this JsonElement json,
 string propertyName,
 int defaultValue = default)
 {
 if (!json.IsNull() &&
 json.TryGetProperty(propertyName, out JsonElement element) &&
 !element.IsNull() &&
 element.TryGetInt32(out int value))
 return value;

 return defaultValue;
 }

 public static ulong GetULong(
 this string val,
 ulong defaultValue = default)
 {
 return string.IsNullOrWhiteSpace(val) ||
 !ulong.TryParse(val, out ulong result)
 ? defaultValue
 : result;
 }

 public static ulong GetUlong(
 this JsonElement json,
 string propertyName,
 ulong defaultValue = default)
 {
 if (!json.IsNull() &&

234 | Chapter 7: Manipulating Data

 json.TryGetProperty(propertyName, out JsonElement element) &&
 !element.IsNull() &&
 element.TryGetUInt64(out ulong value))
 return value;

 return defaultValue;
 }

 public static long GetLong(
 this JsonElement json,
 string propertyName,
 long defaultValue = default)
 {
 if (!json.IsNull() &&
 json.TryGetProperty(propertyName, out JsonElement element) &&
 !element.IsNull() &&
 element.TryGetInt64(out long value))
 return value;

 return defaultValue;
 }

 public static bool GetBool(
 this JsonElement json,
 string propertyName,
 bool defaultValue = default)
 {
 if (!json.IsNull() &&
 json.TryGetProperty(propertyName, out JsonElement element) &&
 !element.IsNull())
 return element.GetBoolean();

 return defaultValue;
 }

 public static double GetDouble(
 this string val,
 double defaultValue = default)
 {
 return string.IsNullOrWhiteSpace(val) ||
 !double.TryParse(val, out double result)
 ? defaultValue
 : result;
 }

 public static double GetDouble(
 this JsonElement json,
 string propertyName,
 double defaultValue = default)
 {
 if (!json.IsNull() &&
 json.TryGetProperty(propertyName, out JsonElement element) &&

7.6 Working with JSON Data | 235

 !element.IsNull() &&
 element.TryGetDouble(out double value))
 return value;

 return defaultValue;
 }

 public static decimal GetDecimal(
 this JsonElement json,
 string propertyName,
 decimal defaultValue = default)
 {
 if (!json.IsNull() &&
 json.TryGetProperty(propertyName, out JsonElement element) &&
 !element.IsNull() &&
 element.TryGetDecimal(out decimal value))
 return value;

 return defaultValue;
 }

 public static TEnum GetEnum<TEnum>
 (this JsonElement json,
 string propertyName,
 TEnum defaultValue = default)
 where TEnum: struct
 {
 if (!json.IsNull() &&
 json.TryGetProperty(propertyName, out JsonElement element) &&
 !element.IsNull())
 {
 string enumString = element.GetString();

 if (enumString != null &&
 Enum.TryParse(enumString, out TEnum num))
 return num;
 }

 return defaultValue;
 }
}

The Main method shows how to perform custom deserialization:

static void Main()
{
 string poJson =
 new PurchaseOrderService()
 .Get(poID: 123);

 JsonElement elm = JsonDocument.Parse(poJson).RootElement;

 JsonElement additional = elm.GetProperty("additional_info");

236 | Chapter 7: Manipulating Data

 JsonElement items = elm.GetProperty("items");

 if (additional.IsNull() || items.IsNull())
 throw new ArgumentException("incomplete PO");

 var po = new PurchaseOrder
 {
 Address = elm.GetString("address", "none"),
 CompanyName = elm.GetString("company_name", string.Empty),
 Phone = elm.GetString("phone", string.Empty),
 Status = elm.GetEnum("status", PurchaseOrderStatus.Received),
 Terms = additional.GetString("terms", string.Empty),
 POC = additional.GetString("poc", string.Empty),
 AdditionalInfo =
 (from jElem in additional.EnumerateObject()
 select jElem)
 .ToDictionary(
 key => key.Name,
 val => val.Value.GetString()),
 Items =
 (from jElem in items.EnumerateArray()
 select new PurchaseItem
 {
 Description = jElem.GetString("description"),
 Price = jElem.GetDecimal("price"),
 Quantity = jElem.GetDouble("quantity"),
 SerialNumber = jElem.GetString("serial_number")
 })
 .ToList()
 };

 Console.WriteLine($"{po.CompanyName}");
 Console.WriteLine($"{po.Terms}");
 Console.WriteLine($"{po.AdditionalInfo["terms"]}");
 Console.WriteLine($"{po.Items[0].Description}");
}

Discussion
While using the JsonSerializer is the preferred choice in serialization and deseriali‐
zation, sometimes you don’t get a clean one-to-one structural match between JSON
and C# objects. For example, you might need to get data from different sources with
different formats and have a single C# object to populate. Other times, you might
have a hierarchical JSON document and want to flatten it into your own object.
Another common situation is to have objects that already work with one version, and
a new version of the API changes structure. In a way, these are multiple viewpoints of
the same problem, which you can solve by doing custom deserialization.

The two types from the System.Text.Json namespace for custom deserialization are
JsonDocument and JsonElement. The Main method shows how to use JsonDocument

7.6 Working with JSON Data | 237

to parse JSON input and obtain a JsonElement via the RootElement property. After
that, we just work with JsonElement members.

JsonElement has several members, including GetString and GetInt64, for doing
conversions. The problem with relying on those alone is that data is often not clean.
Even if you own the consumer and producer ends of the application, obtaining per‐
fectly clean data might be illusive. To solve this problem, I created the JsonConver
sion)Extensions class.

Conceptually, JsonConversionExtensions wraps a lot of boilerplate code that you
need to call to ensure the data you’re reading is what you expect. It also has an
optional default value concept.

The first trick to work around is that a null value in JsonElement isn’t represented as
null. The IsNull method examines the ValueKind property, checking if either the
Undefined or Null properties are true. This is an important method used by other
conversion methods.

Skimming through the rest of the methods, you’ll see a familiar pattern. Each of them
checks for IsNull on the element and then uses one or more combinations of Try
GetXxx and IsNull calls to get the value. This is safe and avoids exceptions in case the
value is null or is of the wrong type. That’s right, some APIs document values of one
type and return another type at runtime, set numbers to null, and omit properties.

Each method has a default parameter. If the code isn’t able to extract a real value, it
uses defaultValue. The defaultValue parameter is optional and reverts to the C#
default of the return type.

The Main method shows how to construct an object with JsonElement and the Json
ConversionExtensions class. You can see how the code populates each property with
a GetXxx method.

A couple of useful JsonElement methods are EnumerateObject and EnumerateArray.
In previous sections, JsonSerializer deserialized the JSON additional_info object
into a C# dictionary. This is how you handle an object with variable information,
where you don’t know what the properties of the object are. You might see this for an
API that returns multiple errors in a single error JSON response, where each property
is a code or description of the error. In the PurchaseOrder example, this represents a
place where someone can add miscellaneous information that doesn’t fit into a
predesigned property. To read these properties manually, use EnumerateObject. It
returns each property/value pair in the object. You can see the LINQ statement that
creates a new dictionary by extracting the Key and Value from each JsonProperty
that EnumerateObject returns.

238 | Chapter 7: Manipulating Data

EnumerateArray returns each element of a list. In the solution, we project each
JsonElement returned from EnumerateArray into a new PurchaseOrderItem

instance.

The JsonConversionExtensions is incomplete, because it doesn’t include dates. Since
DateTime processing is a special case, I separated it from this example; you can find
more information about it in Recipe 7.10.

See Also
Recipe 7.10, “Flexible DateTime Reading”

7.7 Consuming XML
Problem
You need to convert an XML document to an object.

Solution
Here’s what a PurchaseOrder looks like:

public enum PurchaseOrderStatus
{
 Received,
 Processing,
 Fulfilled
}

public class PurchaseItem
{
 public string SerialNumber { get; set; }

 public string Description { get; set; }

 public float Quantity { get; set; }

 public decimal Price { get; set; }
}

public class PurchaseOrder
{
 public string CompanyName { get; set; }
 public string Address { get; set; }
 public string Phone { get; set; }

 public PurchaseOrderStatus Status { get; set; }

 public Dictionary<string, string> AdditionalInfo { get; set; }

7.7 Consuming XML | 239

 public List<PurchaseItem> Items { get; set; }
}

This method simulates a request that returns XML data:

static string GetXml()
{
 return @"
<PurchaseOrder xmlns=""https://www.oreilly.com"">
 <Address>123 4th St.</Address>
 <CompanyName>Acme, Inc.</CompanyName>
 <Phone>555-835-7609</Phone>
 <Status>Received</Status>
 <AdditionalInfo>
 <Terms>Net 30</Terms>
 <POC>J. Smith</POC>
 </AdditionalInfo>
 <Items>
 <PurchaseItem SerialNumber=""123"">
 <Description>Widget</Description>
 <Price>13.95</Price>
 <Quantity>5</Quantity>
 </PurchaseItem>
 </Items>
</PurchaseOrder>";
}

The Main method shows how to deserialize XML into objects:

static void Main(string[] args)
{
 XNamespace or = "https://www.oreilly.com";

 XName address = or + nameof(PurchaseOrder.Address);
 XName company = or + nameof(PurchaseOrder.CompanyName);
 XName phone = or + nameof(PurchaseOrder.Phone);
 XName status = or + nameof(PurchaseOrder.Status);
 XName info = or + nameof(PurchaseOrder.AdditionalInfo);
 XName poItems = or + nameof(PurchaseOrder.Items);
 XName purchaseItem = or + nameof(PurchaseItem);
 XName description = or + nameof(PurchaseItem.Description);
 XName price = or + nameof(PurchaseItem.Price);
 XName quantity = or + nameof(PurchaseItem.Quantity);
 XName serialNum = nameof(PurchaseItem.SerialNumber);

 string poXml = GetXml();

 XElement poElmt = XElement.Parse(poXml);

 PurchaseOrder po =
 new PurchaseOrder
 {

240 | Chapter 7: Manipulating Data

 Address = (string)poElmt.Element(address),
 CompanyName = (string)poElmt.Element(company),
 Phone = (string)poElmt.Element(phone),
 Status =
 Enum.TryParse(
 (string)poElmt.Element(nameof(po.Status)),
 out PurchaseOrderStatus poStatus)
 ? poStatus
 : PurchaseOrderStatus.Received,
 AdditionalInfo =
 (from addInfo in poElmt.Element(info).Descendants()
 select addInfo)
 .ToDictionary(
 key => key.Name.LocalName,
 val => val.Value),
 Items =
 (from item in poElmt
 .Element(poItems)
 .Descendants(purchaseItem)
 select new PurchaseItem
 {
 Description = (string)item.Element(description),
 Price =
 decimal.TryParse(
 (string)item.Element(price),
 out decimal itemPrice)
 ? itemPrice
 : 0m,
 Quantity =
 float.TryParse(
 (string)item.Element(quantity),
 out float qty)
 ? qty
 : 0f,
 SerialNumber = (string)item.Attribute(serialNum)
 })
 .ToList()
 };

 Console.WriteLine($"{po.CompanyName}");
 Console.WriteLine($"{po.AdditionalInfo["Terms"]}");
 Console.WriteLine($"{po.Items[0].Description}");
 Console.WriteLine($"{po.Items[0].SerialNumber}");
}

Discussion
Before JSON took over as the dominant data format, XML was ubiquitous. When
working with things like configuration files, project files, or Extensible Application
Markup Language (XAML), it’s clear that XML is still with us. There’s also a fair
amount of legacy code, including Windows Communication Foundation (WCF) Web

7.7 Consuming XML | 241

Services, that uses XML extensively. For the time being, knowing how to work with
XML is a valuable skill, and LINQ to XML is an excellent tool for that.

The solution shows how to deserialize XML into a PurchaseOrder object. The first
thing the Main method does is set up the namespace. Namespaces in XML are com‐
mon, and the code creates a namespace tag, or. The XNamespace type has a converter
that transforms a string into a namespace. XNamespace also overloads the + operator,
letting you tag elements with a specific namespace, creating a new XName. The code
sets up an XName for each element to make the construction of PurchaseOrder easier
to read.

Each element has a namespace, except for serialNum, which is an attribute. You don’t
annotate data attributes with namespaces because they’re in the containing element’s
namespace. The exception is if you wanted to add a namespace attribute to an ele‐
ment, putting it into a new namespace.

After getting the XML, Main calls XElement.Parse to get a new XElement to work
with. XElement has all the axis methods required to move around the document and
read anything you need. This example keeps things simple by moving through the
document hierarchically with the Attribute, Element, and Descendants axis
methods.

The Element method helps read a subelement under the current element. The
Descendants method goes one level deeper, accessing the children of a specified ele‐
ment. In the XML returned from GetXml, PurchaseOrder is the root element, repre‐
sented by poElmt. Looking at the PurchaseOrder, poElmt.Element(address) reads
the Address element, a subelement of PurchaseOrder. If you recall, address is a
namespace-qualified XName.

Populating the AdditionalInfo and Items properties shows how to use Descend
ants. We use Element to read the subelement and Descendants to get a list of that
element’s children. For AdditionalInfo, Descendants are variable elements and val‐
ues, and we don’t pass an XName argument. In the case of Items, we need to pass the
purchaseItem XName to Descendants to operate on each object.

We use the Attribute method to populate the SerialNumber property of each
PurchaseOrderItem.

An interesting part of this object construction is the ability to declare the out param‐
eter in TryParse operations. This allows us to code the assignment inline. Prior to
this C# feature, we would need to declare the variable outside the object construction,
which doesn’t feel natural, especially when populating during a LINQ projection, like
the Items property in the solution.

242 | Chapter 7: Manipulating Data

See Also
Recipe 7.8, “Producing XML”

7.8 Producing XML
Problem
You need to convert an object to XML.

Solution
Here’s what a PurchaseOrder looks like:

public enum PurchaseOrderStatus
{
 Received,
 Processing,
 Fulfilled
}

public class PurchaseItem
{
 public string SerialNumber { get; set; }

 public string Description { get; set; }

 public float Quantity { get; set; }

 public decimal Price { get; set; }
}

public class PurchaseOrder
{
 public string CompanyName { get; set; }
 public string Address { get; set; }
 public string Phone { get; set; }

 public PurchaseOrderStatus Status { get; set; }

 public Dictionary<string, string> AdditionalInfo { get; set; }

 public List<PurchaseItem> Items { get; set; }
}

This method simulates a data request that returns a PurchaseOrder:

static PurchaseOrder GetPurchaseOrder()
{
 return new PurchaseOrder
 {

7.8 Producing XML | 243

 CompanyName = "Acme, Inc.",
 Address = "123 4th St.",
 Phone = "555-835-7609",
 AdditionalInfo = new Dictionary<string, string>
 {
 { "Terms", "Net 30" },
 { "POC", "J. Smith" }
 },
 Items = new List<PurchaseItem>
 {
 new PurchaseItem
 {
 Description = "Widget",
 Price = 13.95m,
 Quantity = 5,
 SerialNumber = "123"
 }
 }
 };
}

The Main method shows how to serialize that PurchaseOrder instance into XML:

static void Main(string[] args)
{
 PurchaseOrder po = GetPurchaseOrder();

 XNamespace or = "https://www.oreilly.com";

 XElement poXml =
 new XElement(or + nameof(PurchaseOrder),
 new XElement(
 or + nameof(PurchaseOrder.Address),
 po.Address),
 new XElement(
 or + nameof(PurchaseOrder.CompanyName),
 po.CompanyName),
 new XElement(
 or + nameof(PurchaseOrder.Phone),
 po.Phone),
 new XElement(
 or + nameof(PurchaseOrder.Status),
 po.Status),
 new XElement(
 or + nameof(PurchaseOrder.AdditionalInfo),
 (from info in po.AdditionalInfo
 select
 new XElement(
 or + info.Key,
 info.Value))
 .ToList()),
 new XElement(
 or + nameof(PurchaseOrder.Items),

244 | Chapter 7: Manipulating Data

 (from item in po.Items
 select new XElement(
 or + nameof(PurchaseItem),
 new XAttribute(
 nameof(PurchaseItem.SerialNumber),
 item.SerialNumber),
 new XElement(
 or + nameof(PurchaseItem.Description),
 item.Description),
 new XElement(
 or + nameof(PurchaseItem.Price),
 item.Price),
 new XElement(
 or + nameof(PurchaseItem.Quantity),
 item.Quantity)))
 .ToList()));

 Console.WriteLine(poXml);
}

And here’s the output:

<PurchaseOrder xmlns="https://www.oreilly.com">
 <Address>123 4th St.</Address>
 <CompanyName>Acme, Inc.</CompanyName>
 <Phone>555-835-7609</Phone>
 <Status>Received</Status>
 <AdditionalInfo>
 <Terms>Net 30</Terms>
 <POC>J. Smith</POC>
 </AdditionalInfo>
 <Items>
 <PurchaseItem SerialNumber="123">
 <Description>Widget</Description>
 <Price>13.95</Price>
 <Quantity>5</Quantity>
 </PurchaseItem>
 </Items>
</PurchaseOrder>

Discussion
Recipe 7.7 deserialized an XML document into a PurchaseOrder object. This section
goes in the other direction—serializing the PurchaseOrder into an XML document.

We start with the XNamespace, or, which is used as the XName parameter for each ele‐
ment to keep all elements in the same namespace.

The solution builds the XML document via calls to XElement and XAttribute. The
only place we use XAttribute is for the SerialNumber attribute on each Purchase
OrderItem element.

7.8 Producing XML | 245

Visually, you can see that the LINQ to XML query clause is laid out with the same
hierarchical structure as the XML output it produces. The solution uses two XEle
ment constructor overloads. If an element is a bottom node, without children, the sec‐
ond parameter is the element value. However, if the element is a parent element, with
children, the second parameter is a new XElement.

The LINQ statements for both AdditionalInfo and Items project into a new
XElement.

See Also
Recipe 7.7, “Consuming XML”

7.9 Encoding and Decoding URL Parameters
Problem
You’ve working with an API that requires RFC 3986–compliant URLs.

Solution
Here’s a class that properly encodes URL parameters:

public class Url
{
 /// <summary>
 /// Implements Percent Encoding according to RFC 3986
 /// </summary>
 /// <param name="value">string to be encoded</param>
 /// <returns>Encoded string</returns>
 public static string PercentEncode(
 string? value, bool isParam = true)
 {
 const string IsParamReservedChars = @"`!@#$^&*+=,:;'?/|\[] ";
 const string NoParamReservedChars = @"`!@#$^&*()+=,:;'?/|\[] ";

 var result = new StringBuilder();

 if (string.IsNullOrWhiteSpace(value))
 return string.Empty;

 var escapedValue = EncodeDataString(value);

 var reservedChars =
 isParam ? IsParamReservedChars : NoParamReservedChars;

 foreach (char symbol in escapedValue)
 {
 if (reservedChars.IndexOf(symbol) != -1)

246 | Chapter 7: Manipulating Data

 result.Append(
 '%' +
 string.Format("{0:X2}", (int)symbol).ToUpper());
 else
 result.Append(symbol);
 }

 return result.ToString();
 }

 /// <summary>
 /// URL-encode a string of any length.
 /// </summary>
 static string EncodeDataString(string data)
 {
 // the max length in .NET 4.5+ is 65520
 const int maxLength = 65519;

 if (data.Length <= maxLength)
 return Uri.EscapeDataString(data);

 var totalChunks = data.Length / maxLength;

 var builder = new StringBuilder();
 for (var i = 0; i <= totalChunks; i++)
 {
 string? chunk =
 i < totalChunks ?
 data[(maxLength * i)..maxLength] :
 data[(maxLength * i)..];

 builder.Append(Uri.EscapeDataString(chunk));
 }
 return builder.ToString();
 }
}

This method parses a URL, encodes parameters, and rebuilds the URL:

static string EscapeUrlParams(string originalUrl)
{
 const int Base = 0;
 const int Parms = 1;
 const int Key = 0;
 const int Val = 1;
 string[] parts = originalUrl.Split('?');
 string[] pairs = parts[Parms].Split('&');

 string escapedParms =
 string.Join('&',
 (from pair in pairs
 let keyVal = pair.Split('=')
 let encodedVal = Url.PercentEncode(keyVal[Val])

7.9 Encoding and Decoding URL Parameters | 247

 select $"{keyVal[Key]}={encodedVal}")
 .ToList());

 return $"{parts[Base]}?{escapedParms}";
}

The Main method compares different encodings:

static void Main()
{
 const string OriginalUrl =
 "https://myco.com/po/search?company=computers+";
 Console.WriteLine($"Original: '{OriginalUrl}'");

 string escapedUri = Uri.EscapeUriString(OriginalUrl);
 Console.WriteLine($"Escape URI: '{escapedUri}'");

 string escapedData = Uri.EscapeDataString(OriginalUrl);
 Console.WriteLine($"Escape Data: '{escapedData}'");

 string escapedUrl = EscapeUrlParams(OriginalUrl);
 Console.WriteLine($"Escaped URL: '{escapedUrl}'");
}

Producing this output:

Original: 'https://myco.com/po/search?company=computers+'
Escape URI: 'https://myco.com/po/search?company=computers+'
Escape Data: 'https%3A%2F%2Fmyco.com%2Fpo%2Fsearch%3Fcompany
%3Dcomputers%2B'
Escaped URL: 'https://myco.com/po/search?company=computers%2B'

Discussion
If you’re building both the consumer and producer parts of network communica‐
tions, such as an internal enterprise application, getting encoding right might not
matter because both parts use the same library. However, some third-party APIs
require strong compliance with RFC 3986. Your first thought may be that the .NET
System.Uri class has EscapeUriString and EscapeDataString methods. Unfortu‐
nately, these methods haven’t always implemented RFC 3986 properly. While .NET
5+ is cross-platform and seems to have a good implementation, earlier versions of
the .NET Framework for different technologies did not. To fix this, I created the Url
class in the solution.

RFC 3986 is the standard defining internet URL encoding. RFC
stands for “Request for Comments,” and standards are generally
labeled with RFC followed by some unique number.

248 | Chapter 7: Manipulating Data

The PercentEncode replaces each character of the value parameter with a two-digit
hex representation with a percent (%) prefix. The first operation is to call EscapeData
String. This method calls Uri.EscapeDataString. One of the issues with Uri.
EscapeDataString is a length constraint, so this method chunks the input to ensure
all the data is encoded. The approach is to allow Uri.EscapeDataString to take care
of most of the conversion and let PercentEncode supplement for characters that
weren’t encoded.

PercentEncode has a second parameter, isParam, that indicates whether we should
encode parentheses. It defaults to true, and users would set it to false to prevent
encoding parentheses, which is the only difference between the IsParamReserved
Chars and NoParamReservedChars. If the method finds a character that hasn’t been
encoded, it does the encoding manually.

We only encode query string parameter values because the base URL, segments, and
parameter names are values that don’t need encoding. The EscapeUrlParameters
method does this by splitting the URL from the parameters and iterating through
each parameter. For each parameter, it splits the parameter name from its value and
calls PercentEncode on the value. After encoding values, the code rebuilds and
returns the URL.

The Main method shows the different types of encoding, illuminating why we chose
the custom encoding approach. Notice that Uri.EscapeUriString didn’t encode the
+ symbol. Using Uri.EscapeDataString encoded the entire URL, which isn’t what
you want. Breaking up the URL and encoding each value worked perfectly.

Remember that you might get good results in a .NET 5+ application. However, if
you’re doing cross-platform work in older .NET Framework versions, the results of
Uri.EscapeUriString and Uri.EscapeDataString are inconsistent and likely to
cause bugs. Regardless of framework/technology version, the technique of only
encoding parameter values is a common requirement.

7.10 Flexible DateTime Reading
Problem
You need to parse DateTime values that can be in multiple different formats.

Solution
These extension methods help in parsing dates:

public static class StringExtensions
{
 static readonly string[] dateFormats =

7.10 Flexible DateTime Reading | 249

 {
 "ddd MMM dd HH:mm:ss %zzzz yyyy",
 "yyyy-MM-dd\\THH:mm:ss.000Z",
 "yyyy-MM-dd\\THH:mm:ss\\Z",
 "yyyy-MM-dd HH:mm:ss",
 "yyyy-MM-dd HH:mm"
 };

 public static DateTime GetDate(
 this string date,
 DateTime defaultValue)
 {
 return string.IsNullOrWhiteSpace(date) ||
 !DateTime.TryParseExact(
 date,
 dateFormats,
 CultureInfo.InvariantCulture,
 DateTimeStyles.AssumeUniversal |
 DateTimeStyles.AdjustToUniversal,
 out DateTime result)
 ? defaultValue
 : result;
 }

 public static DateTime GetDate(
 this JsonElement json,
 string propertyName,
 DateTime defaultValue = default)
 {
 string? date = json.GetString(propertyName);
 return date?.GetDate(defaultValue) ?? defaultValue;
 }

 public static string? GetString(
 this JsonElement json,
 string propertyName,
 string? defaultValue = default)
 {
 if (!json.IsNull() &&
 json.TryGetProperty(propertyName, out JsonElement element))
 return element.GetString() ?? defaultValue;

 return defaultValue;
 }

 public static bool IsNull(this JsonElement json)
 {
 return
 json.ValueKind == JsonValueKind.Undefined ||
 json.ValueKind == JsonValueKind.Null;
 }
}

250 | Chapter 7: Manipulating Data

The Main method shows how to extract and parse a JSON document date:

static void Main()
{
 const string TweetID = "1305895383260782593";
 const string CreatedDate = "created_at";

 string tweetJson = GetTweet(TweetID);

 JsonElement tweetElem = JsonDocument.Parse(tweetJson).RootElement;

 DateTime created = tweetElem.GetDate(CreatedDate);

 Console.WriteLine($"Created Date: {created}");
}

static string GetTweet(string tweetID)
{
 return @"{
 ""text"": ""Thanks @github for approving sponsorship for
 LINQ to Twitter: https://t.co/jWeDEN07HN"",
 ""id"": ""1305895383260782593"",
 ""author_id"": ""15411837"",
 ""created_at"": ""2020-09-15T15:44:56.000Z""
 }";
}

Discussion
When using third-party APIs, you’ll encounter occasional inconsistencies in data rep‐
resentation. One problematic area is parsing dates. Different APIs have different date
formats or even represent different date properties with separate formats in the same
API. The StringExtensions class in the solution helps fix this problem.

I extracted StringExtensions members from JsonConversion
Extensions in Recipe 7.6.

The solution includes a dateFormats array containing instances of date format
strings. These are all the possible date formats that this code can accommodate. The
GetDate method uses dateFormats in the call to TryParseExact. Whenever you
encounter a new date format (for instance, if an API offers a new version and updates
date formats), add it to dateFormats.

It’s best practice to represent dates as UTC values, so the DateTimeStyles arguments
reflect this assumption.

7.10 Flexible DateTime Reading | 251

There are two overloads of GetDate, depending on whether you need to pass in a
string or a JsonElement. The JsonElement overload uses the GetString extension
method and forwards the result to the other GetDate method.

These methods are safe because you have to account for bad data. They check for
null, use TryParse, and return default values when they can’t read a valid value.
The defaultValue is optional, using the default of the return type if not provided.

See Also
Recipe 7.6, “Working with JSON Data”

252 | Chapter 7: Manipulating Data

CHAPTER 8

Matching with Patterns

Historically, developers have implemented business rules with various logical checks
and comparisons. Sometimes the rules are complex—naturally leading to code that’s
difficult to write, read, and maintain. Think about how often you’ve encountered
multibranch logic with multivariate comparisons and multiple levels of nesting.

To help ease this complexity, modern programming languages have begun introduc‐
ing pattern matching—features of the language that help match facts to results with
declarative syntax. In C#, pattern matching manifests as a growing list of features
added in each new version, especially from C# 7 and later.

The theme of this chapter revolves around hotel scheduling and using patterns for
business rules. The criteria is usually around a type of customer such as Bronze, Sil‐
ver, or Gold, with Gold being the highest level because those customers have more
points from more frequent hotel stays.

This chapter discusses pattern matching for properties, tuples, and types. There’s also
a couple of sections on logical operations and how they enable and simplify multi‐
conditional patterns. Surprisingly, C# had some form of pattern matching since v1.0.
The first section of this chapter discusses the is and as operators and shows the new
enhancements to the is operator.

8.1 Converting Instances Safely
Problem
Your legacy code is weakly typed, relies on procedural patterns, and needs to be
refactored.

253

Solution
Here’s an interface and implementing classes that produce results we’re looking for:

public interface IRoomSchedule
{
 void ScheduleRoom();
}

public class GoldSchedule : IRoomSchedule
{
 public void ScheduleRoom() =>
 Console.WriteLine("Scheduling Gold Room");
}

public class SilverSchedule : IRoomSchedule
{
 public void ScheduleRoom() =>
 Console.WriteLine("Scheduling Silver Room");
}

public class BronzeSchedule : IRoomSchedule
{
 public void ScheduleRoom() =>
 Console.WriteLine("Scheduling Bronze Room");
}

Here’s a method representing data returned in legacy nontyped instances:

static ArrayList GetWeakTypedSchedules()
{
 var list = new ArrayList();

 list.Add(new BronzeSchedule());
 list.Add(new SilverSchedule());
 list.Add(new GoldSchedule());

 return list;
}

And this code processes the legacy collection:

static void ProcessLegacyCode()
{
 ArrayList schedules = GetWeakTypedSchedules();

 foreach (var schedule in schedules)
 {
 if (schedule is IRoomSchedule)
 {
 IRoomSchedule roomSchedule = (IRoomSchedule)schedule;
 roomSchedule.ScheduleRoom();
 }

254 | Chapter 8: Matching with Patterns

 //
 // alternatively
 //

 IRoomSchedule asRoomSchedule = schedule as IRoomSchedule;

 if (asRoomSchedule != null)
 asRoomSchedule.ScheduleRoom();

 //
 // even better
 //

 if (schedule is IRoomSchedule isRoomSchedule)
 isRoomSchedule.ScheduleRoom();
 }
}

Here’s more modern code that returns a strongly typed collection:

static List<IRoomSchedule> GetStrongTypedSchedules()
{
 return new List<IRoomSchedule>
 {
 new BronzeSchedule(),
 new SilverSchedule(),
 new GoldSchedule()
 };
}

And this code processes the strongly typed collection:

static void ProcessModernCode()
{
 List<IRoomSchedule> schedules = GetStrongTypedSchedules();

 foreach (var schedule in schedules)
 {
 schedule.ScheduleRoom();

 if (schedule is GoldSchedule gold)
 Console.WriteLine(
 $"Extra processing for {gold.GetType()}");
 }
}

The Main methods call both the legacy and modern versions:

static void Main()
{
 ProcessLegacyCode();
 ProcessModernCode();
}

8.1 Converting Instances Safely | 255

Discussion
The as and is operators appeared in C# 1; you’re probably aware of and/or have used
them. To recap, the is operator tells whether an object’s type is the same as the type
being matched. The as operator performs a conversion of a reference type object to a
specified type. The as operator returns null if the converted instance isn’t the speci‐
fied type. This example also demonstrates a recent C# addition that allows both type
checking and conversion with the is operator.

Most of the code we write today uses generic collections and it’s increasingly unneces‐
sary to use weakly typed collections. I’ll go out on a limb here and say that you might
adopt a rule of thumb to use generic collections as a default, with the exception being
when you can’t avoid using weakly typed collections. One important situation where
you have to use weakly typed collections is when maintaining legacy code that already
uses them. Generics weren’t added until C# 2, so you might encounter some old code
with weakly typed collections. Another example is when you have a library you need
or want to use that uses weakly typed collections. In practical terms, you might not
want to rewrite that code because of the time and resources required—especially if it’s
already tested and working well.

In the solution, the GetWeakTypedSchedules method returns an ArrayList, which is
a weakly typed collection because it only operates on instances of type Object. The
ProcessLegacyCode method calls GetWeakTypedSchedules and shows how to use the
as and is operators.

The first if statement in the foreach loop uses the is operator to determine whether
the object is an IRoomSchedule. If so, it uses a cast operator to get an IRoomSchedule
instance and calls GetSchedule. You might ask why the is operator is necessary if we
already know that the collection contains IRoomSchedule instances—why don’t we
just go straight for the conversion? The problem is that there isn’t a guarantee of what
the types in that collection are. What if a developer accidentally loads an object that
isn’t IRoomSchedule into the collection? The is operator improves the reliability of
the code.

An alternative to the is operator is the as operator. In the solution, the schedule as
IRoomSchedule performs the conversion. If the result isn’t null, the object is an IRoom
Schedule. This approach could perform better because an is operation both checks
the type and still requires a conversion, whereas the as operator only requires a con‐
version and a null check.

The final if statement demonstrates the newer is operator syntax. It does both the
type check and conversion, assigning the result to the isRoomSchedule variable. The
isRoomSchedule variable is null if schedule wasn’t an IRoomSchedule, but since the
is operator returned a bool result, we don’t need to do the extra null check.

256 | Chapter 8: Matching with Patterns

The GetStrongTypedSchedules and ProcessModernCode show how you would prob‐
ably want to write the code today. Notice how it has less ceremony because of the
strong typing. Each class implements the same interface, and the collection is that
interface, allowing you to write code that operates efficiently on every object.

This example also demonstrates that the new is operator can be useful in current
code (not only legacy). In ProcessModernCode, even though all the objects implement
IRoomSchedule, the is operator lets us check for GoldSchedule and do some extra
processing.

8.2 Catching Filtered Exceptions
Problem
You need to handle logic for the same exception type with different conditions.

Solution
This is a demo class that throws exceptions:

public class Scheduler
{
 public void ScheduleRoom(string arg1, string arg2)
 {
 _ = arg1 ?? throw new ArgumentNullException(nameof(arg1));
 _ = arg2 ?? throw new ArgumentNullException(nameof(arg2));
 }
}

This Main method uses exception filters for clean processing:

static void Main()
{
 try
 {
 Console.Write("Choose (1) arg1 or (2) arg2? ");
 string arg = Console.ReadLine();

 var scheduler = new Scheduler();

 if (arg == "1")
 scheduler.ScheduleRoom(null, "arg2");
 else
 scheduler.ScheduleRoom("arg1", null);
 }
 catch (ArgumentNullException ex1)
 when (ex1.ParamName == "arg1")
 {
 Console.WriteLine("Invalid arg1");
 }

8.2 Catching Filtered Exceptions | 257

 catch (ArgumentNullException ex2)
 when (ex2.ParamName == "arg2")
 {
 Console.WriteLine("Invalid arg2");
 }
}

Discussion
An interesting addition to C#, related to pattern matching, is the exception filter. As
you know, catch blocks operate on the type of exception thrown. However, when the
same exception type can be thrown for different reasons, sometimes it’s useful to be
able to differentiate processing for each reason. While you could add if or switch
statements in the catch block, filters offer a clean way to separate and simplify the
different logic.

In the solution, we’re interested in filtering ArgumentNullException, depending on
which parameter is null. The ScheduleRoom method checks each parameter and
throws ArgumentNullException if either is null.

The Main method wraps the call to ScheduleRoom in a try/catch block. This example
has two catch blocks, each of type ArgumentNullException. The difference between
the two is the filter, specified by the when clause. The parameter to when is a bool
expression. In the solution, the expression compares the ParamName to the parameter
name it’s designed to handle.

8.3 Simplifying Switch Assignments
Problem
You want to return a value, based on some criteria, but don’t want to return from
every switch case.

Solution
Here’s an interface and implementing classes that are results we’re looking for:

public interface IRoomSchedule
{
 void ScheduleRoom();
}

public class GoldSchedule : IRoomSchedule
{
 public void ScheduleRoom() =>
 Console.WriteLine("Scheduling Gold Room");
}

258 | Chapter 8: Matching with Patterns

public class SilverSchedule : IRoomSchedule
{
 public void ScheduleRoom() =>
 Console.WriteLine("Scheduling Silver Room");
}

public class BronzeSchedule : IRoomSchedule
{
 public void ScheduleRoom() =>
 Console.WriteLine("Scheduling Bronze Room");
}

This enum is used in upcoming logic:

public enum ScheduleType
{
 None,
 Bronze,
 Silver,
 Gold
}

This class shows the switch statement and new switch expression:

public class Scheduler
{
 public IRoomSchedule CreateStatement(
 ScheduleType scheduleType)
 {
 switch (scheduleType)
 {
 case ScheduleType.Gold:
 return new GoldSchedule();
 case ScheduleType.Silver:
 return new SilverSchedule();
 case ScheduleType.Bronze:
 default:
 return new BronzeSchedule();
 }
 }

 public IRoomSchedule CreateExpression(
 ScheduleType scheduleType) =>
 scheduleType switch
 {
 ScheduleType.Gold => new GoldSchedule(),
 ScheduleType.Silver => new SilverSchedule(),
 ScheduleType.Bronze => new BronzeSchedule(),
 _ => new BronzeSchedule()
 };
}

8.3 Simplifying Switch Assignments | 259

The Main method tests the code:

static void Main()
{
 Console.Write(
 "Choose (1) Bronze, (2) Silver, or (3) Gold: ");
 string choice = Console.ReadLine();

 Enum.TryParse(choice, out ScheduleType scheduleType);

 var scheduler = new Scheduler();

 IRoomSchedule scheduleStatement =
 scheduler.CreateStatement(scheduleType);
 scheduleStatement.ScheduleRoom();

 IRoomSchedule scheduleExpression =
 scheduler.CreateExpression(scheduleType);
 scheduleExpression.ScheduleRoom();
}

Discussion
The switch statement has been around since C# 1, and a recent addition is a switch
expression. The main syntactic features of the switch expression are a shorthand
notation and the ability to assign a result to a variable. If you think about all the times
you’ve used a switch statement, you might have noticed that producing a value or
new instance was a common theme. The switch expression streamlines that theme
and improves upon it with pattern matching.

The solution has two examples: a switch statement and a switch expression. Both
rely on the ScheduleType enum for criteria and produce an IRoomSchedule type,
based on that criteria.

The CreateStatement method uses a switch statement, with case clauses for each
member of the ScheduleType enum. Notice how it returns the value from the method
and that it requires normal block body syntax (with curly braces).

The CreateExpression method uses the new switch expression. Notice that the
method can be command body (with arrow), returning the expression. Instead of a
parameter in parentheses after the switch keyword, the parameter precedes the
switch keyword. Also, instead of case clauses, case pattern matches precede an
arrow, with the result expression after the arrow. The default case is the discard
pattern, _.

Whenever the parameter matches the case pattern, the switch expression returns the
result. In the solution, the patterns are the values of the ScheduleType enum. The

260 | Chapter 8: Matching with Patterns

result of the switch expression is the result of the method because the command syn‐
tax of the method specifies the switch expression.

If you have a use case where there’s logic to process for each case, but don’t need to
return, a classic switch statement might make more sense. However, if you can use
pattern matching and need to return a value, the switch expression can be an excel‐
lent choice.

8.4 Switching on Property Values
Problem
You need business rules based on strongly typed class properties.

Solution
Here’s a class with properties that we need to evaluate:

public class Room
{
 public int Number { get; set; }
 public string RoomType { get; set; }
 public string BedSize { get; set; }
}

This enum is the result of the evaluation:

public enum ScheduleType
{
 None,
 Bronze,
 Silver,
 Gold
}

This method gets the data we need:

static List<Room> GetRooms()
{
 return new List<Room>
 {
 new Room
 {
 Number = 333,
 BedSize = "King",
 RoomType = "Suite"
 },
 new Room
 {
 Number = 222,
 BedSize = "King",

8.4 Switching on Property Values | 261

 RoomType = "Regular"
 },
 new Room
 {
 Number = 111,
 BedSize = "Queen",
 RoomType = "Regular"
 },
 };
}

This method uses that data and returns an enum, based on matching pattern:

const int RoomNotAvailable = -1;

static int AssignRoom(ScheduleType scheduleType)
{
 foreach (var room in GetRooms())
 {
 ScheduleType roomType = room switch
 {
 { BedSize: "King", RoomType: "Suite" }
 => ScheduleType.Gold,
 { BedSize: "King", RoomType: "Regular" }
 => ScheduleType.Silver,
 { BedSize: "Queen", RoomType: "Regular" }
 => ScheduleType.Bronze,
 _ => ScheduleType.Bronze
 };

 if (roomType == scheduleType)
 return room.Number;
 }

 return RoomNotAvailable;
}

The Main method drives the program:

static void Main()
{
 Console.Write(
 "Choose (1) Bronze, (2) Silver, or (3) Gold: ");
 string choice = Console.ReadLine();

 Enum.TryParse(choice, out ScheduleType scheduleType);

 int roomNumber = AssignRoom(scheduleType);

 if (roomNumber == RoomNotAvailable)
 Console.WriteLine("Room not available.");
 else

262 | Chapter 8: Matching with Patterns

 Console.WriteLine($"The room number is {roomNumber}.");
}

Discussion
In the past, a switch statement matched cases with the value of a single parameter.
Now, you can do parameter matching based on the values of properties in an object.

The solution uses an instance of the Room class as the parameter to a switch expres‐
sion in the AssignRoom method. The pattern is an object with the properties of Room
and the values to match. The result returned is based on which pattern the properties
of the parameter match.

The goal of the program is to find an available room for a customer. The purpose of
AssignRoom is to return the first room associated with a specific schedule type. That’s
why AssignRoom compares roomType and scheduleType, returning if they match.

Property pattern matching is a nice approach because it’s easy to read. This poten‐
tially translates into more maintainable code. One trade-off is that it can be verbose if
you’re matching a lot of properties. The next recipe offers shorter syntax.

See Also
Recipe 8.5, “Switching on Tuples”

8.5 Switching on Tuples
Problem
You need business rules and prefer shorter syntax.

Solution
This class is interesting because it has a deconstructor:

public class Room
{
 public int Number { get; set; }
 public string RoomType { get; set; }
 public string BedSize { get; set; }

 public void Deconstruct(out string size, out string type)
 {
 size = BedSize;
 type = RoomType;
 }
}

8.5 Switching on Tuples | 263

Here’s an enum that this program will produce:

public enum ScheduleType
{
 None,
 Bronze,
 Silver,
 Gold
}

Here’s the data the program will work with:

static List<Room> GetRooms()
{
 return new List<Room>
 {
 new Room
 {
 Number = 333,
 BedSize = "King",
 RoomType = "Suite"
 },
 new Room
 {
 Number = 222,
 BedSize = "King",
 RoomType = "Regular"
 },
 new Room
 {
 Number = 111,
 BedSize = "Queen",
 RoomType = "Regular"
 },
 };
 }

And this method uses the tuple returned from the class deconstructor to determine
which enum to return:

static int AssignRoom(ScheduleType scheduleType)
{
 foreach (var room in GetRooms())
 {
 ScheduleType roomType = room switch
 {
 ("King", "Suite") => ScheduleType.Gold,
 ("King", "Regular") => ScheduleType.Silver,
 ("Queen", "Regular") => ScheduleType.Bronze,
 _ => ScheduleType.Bronze
 };

 if (roomType == scheduleType)

264 | Chapter 8: Matching with Patterns

 return room.Number;
 }

 return RoomNotAvailable;
}

The Main method drives the program:

static void Main()
{
 Console.Write(
 "Choose (1) Bronze, (2) Silver, or (3) Gold: ");
 string choice = Console.ReadLine();

 Enum.TryParse(choice, out ScheduleType scheduleType);

 int roomNumber = AssignRoom(scheduleType);

 if (roomNumber == RoomNotAvailable)
 Console.WriteLine("Room not available.");
 else
 Console.WriteLine($"The room number is {roomNumber}.");
}

Discussion
Throughout this book, you’ve seen how useful tuples are for situations where you
want to manage a set of values without all the ceremony of a custom type. The quick
syntax of tuples makes them ideal for simple pattern matching.

In this example, we do have a custom type, Room. Notice that Room has a custom
deconstructor, which we’ll use in this solution. The GetRooms method returns a
List<Room>. AssignRooms uses that collection. However, because of the deconstruc‐
tor, we can use each room as a switch expression parameter, which is smart enough
to use the deconstructor to produce a tuple for pattern matching.

Except for using tuples through a deconstructor, this demo is the same as Recipe 8.4.
In this example, the tuple offered a shorter syntax. The property pattern is more ver‐
bose but easier to read. One consideration is that if you’re matching scalar values, like
bool or int, the property pattern documents better. If you’re matching strings or
enums, a tuple might provide the best of both worlds in terms of readability and
shorter syntax. Because the choice between the two approaches is situational, it’s best
to evaluate trade-offs in each situation to see what makes sense to you.

See Also
Recipe 8.4, “Switching on Property Values”

8.5 Switching on Tuples | 265

8.6 Switching on Position
Problem
You need business rules based on values but don’t want to create a new single-use
class.

Solution
This enum is the result we’ll look for:

public enum ScheduleType
{
 None,
 Bronze,
 Silver,
 Gold
}

Here’s a class used for specifying decision criteria:

public class Room
{
 public int Number { get; set; }
 public string RoomType { get; set; }
 public string BedSize { get; set; }
}

These methods simulate getting data from two sources:

static List<Room> GetHotel1Rooms()
{
 return new List<Room>
 {
 new Room
 {
 Number = 333,
 BedSize = "King",
 RoomType = "Suite"
 },
 new Room
 {
 Number = 111,
 BedSize = "Queen",
 RoomType = "Regular"
 },
 };
}

static List<Room> GetHotel2Rooms()
{
 return new List<Room>

266 | Chapter 8: Matching with Patterns

 {
 new Room
 {
 Number = 222,
 BedSize = "King",
 RoomType = "Regular"
 },
 };
}

This method joins those data sources to produce a list of tuples:

static
 List<(int no, string size, string type)>
 GetRooms()
{
 var rooms = GetHotel1Rooms().Union(GetHotel2Rooms());
 return
 (from room in rooms
 select (
 room.Number,
 room.BedSize,
 room.RoomType
))
 .ToList();
}

This method shows the business logic based on positional pattern matching:

static int AssignRoom(ScheduleType scheduleType)
{
 foreach (var room in GetRooms())
 {
 ScheduleType roomType = room switch
 {
 (_, "King", "Suite") => ScheduleType.Gold,
 (_, "King", "Regular") => ScheduleType.Silver,
 (_, "Queen", "Regular") => ScheduleType.Bronze,
 _ => ScheduleType.Bronze
 };

 if (roomType == scheduleType)
 return room.no;
 }

 return RoomNotAvailable;
}

The Main method drives the process:

static void Main()
{
 Console.Write(
 "Choose (1) Bronze, (2) Silver, or (3) Gold: ");

8.6 Switching on Position | 267

 string choice = Console.ReadLine();

 Enum.TryParse(choice, out ScheduleType scheduleType);

 int roomNumber = AssignRoom(scheduleType);

 if (roomNumber == RoomNotAvailable)
 Console.WriteLine("Room not available.");
 else
 Console.WriteLine($"The room number is {roomNumber}.");
}

Discussion
The solution here is similar to Recipe 8.5, in that it also uses tuples for pattern match‐
ing. This solution differs in that it explores the situation where you have two different
sources of data, shown in GetHotel1Rooms and GetHotel2Rooms, simulating what
would normally be database queries. This can happen when companies merge or
form partnerships and their data is similar but not entirely alike.

The GetRooms method shows how to use the LINQ Union operator to combine the
two lists. Rather than create a new type for the combination of values we need, the
method builds a collection of tuples.

When AssignRooms calls GetRooms, you don’t need a deconstructor on an object
because you’re already working with tuples. This is a useful technique if you’re work‐
ing with third-party types where you can’t modify their members.

Inside of AssignRoom, the switch expression uses tuples for the match. What’s imme‐
diately noticeable here is the first parameter, representing the Room.Number property
—there’s a discard symbol for each pattern. Clearly, this could have been omitted in
GetRooms, but I wrote it that way to make a couple of points: value positions must
match and every value is required.

Tuple patterns require values to be in the proper positions (e.g., you can’t swap
Number and Size). The position of each pattern value must match the corresponding
tuple position. In contrast, property patterns can be in any order and differ between
cases.

For tuples, you must include a value for each position of the tuple. Therefore, even if
you don’t use a position in a pattern, you must at least specify the discard parameter.
Property patterns don’t have this restriction, allowing you to add or ignore whatever
properties you want for the pattern.

See Also
Recipe 8.5, “Switching on Tuples”

268 | Chapter 8: Matching with Patterns

8.7 Switching on Value Ranges
Problem
Your business rules are continuous, rather than discrete.

Solution
Here’s an interface, as well as implementing classes that are results we’re looking for:

public interface IRoomSchedule
{
 void ScheduleRoom();
}

public class GoldSchedule : IRoomSchedule
{
 public void ScheduleRoom() =>
 Console.WriteLine("Scheduling Gold Room");
}

public class SilverSchedule : IRoomSchedule
{
 public void ScheduleRoom() =>
 Console.WriteLine("Scheduling Silver Room");
}

public class BronzeSchedule : IRoomSchedule
{
 public void ScheduleRoom() =>
 Console.WriteLine("Scheduling Bronze Room");
}

This method uses relational pattern matching to produce results:

const int SilverPoints = 5000;
const int GoldPoints = 20000;

static IRoomSchedule GetSchedule(int points) =>
 points switch
 {
 >= GoldPoints => new GoldSchedule(),
 >= SilverPoints => new SilverSchedule(),
 < SilverPoints => new BronzeSchedule()
 };

The Main method drives the process:

static void Main()
{
 Console.Write("How many points? ");
 string response = Console.ReadLine();

8.7 Switching on Value Ranges | 269

 if (!int.TryParse(response, out int points))
 {
 Console.WriteLine($"'{response}' is invalid!");
 return;
 }

 IRoomSchedule schedule = GetSchedule(points);

 schedule.ScheduleRoom();
}

Discussion
Previous sections of this chapter explored pattern matching based on discrete values.
The pattern had to be exact to match. However, there are a lot of situations where
values are continuous, rather than discrete. An example of this is the solution in this
section, where hotel customers could have a range of points in their accounts.

In the solution, customers with points from 0 to 4,999 are Bronze. Those with points
from 5,000 to 19,999 are Silver. Those with 20,000 points or more are Gold. The Sil
verPoints and GoldPoints constants in the solution define the boundaries.

The Main method asks how many points a customer has and passes that value to Get
Schedule. This value can vary, depending on how many times a person booked a
room or used other hotel services. Because of this, GetSchedule uses a switch expres‐
sion based on those points. Instead of using a discrete pattern for the match, Get
Schedule uses relational operators.

The first pattern asks if points is equal to or higher than GoldPoints. If not, points
must be less, and the code checks to see if the points are equal to or higher than
SilverPoints. Since we already evaluated the GoldPoints case, it follows that the
range is between SilverPoints and less than GoldPoints. The final case, less than
SilverPoints, documents the meaning of Bronze, but you could have easily replaced
that with a discard pattern because the other two cases handled every other possibil‐
ity, and Bronze is all that’s left.

8.8 Switching with Complex Conditions
Problem
Your business rules are multiconditional.

Solution
Here’s an interface, as well as implementing classes that are results we’re looking for:

270 | Chapter 8: Matching with Patterns

public interface IRoomSchedule
{
 void ScheduleRoom();
}

public class GoldSchedule : IRoomSchedule
{
 public void ScheduleRoom() =>
 Console.WriteLine("Scheduling Gold Room");
}

public class SilverSchedule : IRoomSchedule
{
 public void ScheduleRoom() =>
 Console.WriteLine("Scheduling Silver Room");
}

public class BronzeSchedule : IRoomSchedule
{
 public void ScheduleRoom() =>
 Console.WriteLine("Scheduling Bronze Room");
}

This class describes the criteria to use:

public class Customer
{
 public int Points { get; set; }

 public bool HasFreeUpgrade { get; set; }
}

This method generates simulated data with various values to exercise our logic:

static List<Customer> GetCustomers() =>
 new List<Customer>
 {
 new Customer
 {
 Points = 25000,
 HasFreeUpgrade = false
 },
 new Customer
 {
 Points = 10000,
 HasFreeUpgrade = true
 },
 new Customer
 {
 Points = 1000,
 HasFreeUpgrade = true
 },
 };

8.8 Switching with Complex Conditions | 271

Here’s a method using complex logic in a switch expression:

static IRoomSchedule GetSchedule(Customer customer) =>
 customer switch
 {
 Customer c
 when
 c.Points >= GoldPoints
 ||
 (c.Points >= SilverPoints && c.HasFreeUpgrade)
 => new GoldSchedule(),

 Customer c
 when
 c.Points >= SilverPoints
 ||
 (c.Points < SilverPoints && c.HasFreeUpgrade)
 => new SilverSchedule(),

 Customer c
 when
 c.Points < SilverPoints
 => new BronzeSchedule(),

 _ => new BronzeSchedule()
 };

The Main method iterates through results:

static void Main()
{
 foreach (var customer in GetCustomers())
 {
 IRoomSchedule schedule = GetSchedule(customer);
 schedule.ScheduleRoom();
 }
}

Discussion
Sometimes conditions are so complex that the techniques shown in earlier sections of
this chapter are inadequate for solving the problem. An example is the solution in
this section that requires multiple conditions involving more than one property.
Here, we use a switch expression with when clauses to specify matches.

This scenario is based on a Customer type, indicating number of points and whether
the customer has a free upgrade. The free upgrade could have been from a contest or
hotel promotion activity. When scheduling a room, we want to make sure that the
customer gets a room commensurate with their point level. Additionally, if they have
the free upgrade option, they receive a room that is upgraded to the next higher level.
For simplicity, we’re conveniently ignoring whether Gold has a free upgrade.

272 | Chapter 8: Matching with Patterns

The GetSchedule method operates on an instance of Customer. Both the cases for
Gold and Silver result in a room at that level. Additionally, the || operator says that if
customer is at the next lower level, but HasFreeUpgrade is true, then the result is a
room at this higher level.

Using logic like this can get complex fast. Notice the use of newlines and other spac‐
ing to add symmetry and consistency to reading the result.

While this technique can help when the logic is a bit more complex than a discrete
pattern match, you might want to consider a threshold where using if statements
might be a better implementation. One consideration is maintenance, because break‐
ing each piece of the logic out can help with debugging, whereas a single expression
with multiple conditions might not be immediately obvious.

8.9 Using Logical Conditions
Problem
You want multiconditional logic to be more readable.

Solution
Here’s a class to use as criteria:

public class Customer
{
 public int Points { get; set; }

 public int Month { get; set; }
}

This method simulates a data source:

static List<Customer> GetCustomers() =>
 new List<Customer>
 {
 new Customer
 {
 Points = 25000,
 Month = 1
 },
 new Customer
 {
 Points = 10000,
 Month = 12
 },
 new Customer
 {
 Points = 10000,

8.9 Using Logical Conditions | 273

 Month = 11
 },
 new Customer
 {
 Points = 1000,
 Month = 2
 },
 };

This method implements business rules with conditional logic in a switch

expression:

const int SilverPoints = 5000;
const int GoldPoints = 20000;

const int May = 5;
const int Sep = 9;
const int Dec = 12;

static decimal GetDiscount(Customer customer) =>
 (customer.Points, customer.Month) switch
 {
 (>= GoldPoints, not Dec and > Sep or < May) => 0.15m,
 (>= GoldPoints, Dec) => 0.10m,
 (>= SilverPoints, not (Dec or <= Sep and >= May)) => 0.05m,
 _ => 0.0m
 };

The Main method drives this process:

static void Main()
{
 foreach (var customer in GetCustomers())
 {
 decimal discount = GetDiscount(customer);
 Console.WriteLine(discount);
 }
}

Discussion
Recipe 8.8 described how to add complex logic to switch expressions. By complex,
I’m referring to multiple conditions involving two or more properties. This contrasts
with simple pattern matching for previous sections of this chapter that used property
and tuple patterns. Somewhere in between these contrasting approaches of simple
and complex is a moderate approach where you need logic isolated within individual
properties.

The properties of interest in this solution are the Points and Month of the Customer
class. Similar to earlier sections, the Points property contributes to receiving a room
for a customer that has at least a certain number of points. The other condition,

274 | Chapter 8: Matching with Patterns

Month, is the month when the customer wants to book the room. Because of seasonal
supply and demand, some months leave the hotel with more open rooms. Therefore,
this application provides incentives, based on points, for customers to book rooms in
the months with more open rooms.

In the solution, you can see that there are GoldPoints and SilverPoints constants to
tell which level a customer is. Also, there are constants for May, Sep, and Dec—the
busy months. The logic will be to give a discount in the months that are not busy.

The pattern for the switch expression in GetDiscount matches on two properties:
Points and Month. Notice how this code doesn’t rely on an object deconstructor and
the original parameter is a class, rather than a tuple. GetDiscount creates an inline
tuple for the switch expression.

The pattern itself relies on relational operators for Points, as in Recipe 8.7.

The Month pattern uses the new C# 9 logical operators: and, not, and or. The first
expression ensures the customer receives a discount during the winter months,
between Sep and May, except for Dec. The second pattern says that a Gold customer
still gets a discount in Dec, except that it’s 10% instead of 15%.

The last pattern is logically equivalent to the first and uses DeMorgan’s Theorem.
That is, it negates the whole result and swaps and with or. Because the last example
applies not to the entire expression, it uses parentheses. In the first pattern, not
applied to Dec only.

See Also
Recipe 8.7, “Switching on Value Ranges”

Recipe 8.8, “Switching with Complex Conditions”

8.10 Switching on Type
Problem
You need the type of an object for decision making.

Solution
Here’s an interface, as well as implementing classes that are results we’re looking for:

public interface IRoomSchedule
{
 void ScheduleRoom();
}

8.10 Switching on Type | 275

public class GoldSchedule : IRoomSchedule
{
 public void ScheduleRoom() =>
 Console.WriteLine("Scheduling Gold Room");
}

public class SilverSchedule : IRoomSchedule
{
 public void ScheduleRoom() =>
 Console.WriteLine("Scheduling Silver Room");
}

public class BronzeSchedule : IRoomSchedule
{
 public void ScheduleRoom() =>
 Console.WriteLine("Scheduling Bronze Room");
}

The following types represent criteria:

public class Customer {}

public class GoldCustomer : Customer {}

public class SilverCustomer : Customer {}

public class BronzeCustomer : Customer {}

This method simulates a data source:

static List<Customer> GetCustomers() =>
 new List<Customer>
 {
 new GoldCustomer(),
 new SilverCustomer(),
 new BronzeCustomer()
 };

Here’s a method that implements logic based on type pattern matching:

static IRoomSchedule GetSchedule(Customer customer) =>
 customer switch
 {
 GoldCustomer => new GoldSchedule(),
 SilverCustomer => new SilverSchedule(),
 BronzeCustomer => new BronzeSchedule(),
 _ => new BronzeSchedule()
 };

276 | Chapter 8: Matching with Patterns

The Main method iterates through the data to exercise the pattern matching logic:

static void Main()
{
 foreach (var customer in GetCustomers())
 {
 IRoomSchedule schedule = GetSchedule(customer);
 schedule.ScheduleRoom();
 }
}

Discussion
It used to be that the only way to make a decision on type was to either use if state‐
ments or convert the object’s type to a string and use a switch statement with
string cases. A popular ask for C# over the years was to allow a switch statement
with type cases, and now we finally have it.

The solution has a set of classes for GoldCustomer, SilverCustomer, and BronzeCus
tomer, each deriving from Customer. Our goal in this program is to schedule a room,
based on the matching class type.

The GetSchedule method does the scheduling by accepting an object of type
Customer, and the switch expression has a pattern for each of the classes that derive
from Customer. All you need to do is specify the name of each class and the switch
expression matches based on the object type.

8.10 Switching on Type | 277

CHAPTER 9

Examining Recent C# Language Highlights

The C# programming language is continually evolving. Earlier chapters discussed
subjects from C# 1 through C# 8. The exception is pattern matching in Chapter 8,
where some of the patterns were introduced in C# 9. This chapter focuses primarily
on C# 9, the exception being the subject of Recipe 9.9, which is a C# 8 feature.

A central concept in this chapter is immutability—the ability to create and operate on
types that don’t change. Immutability is important for safe multithreading as well as
for the cognitive relief of knowing that code you’ve passed a type to won’t change
(mutate) the contents of the object.

The example scenario is working with addresses, such as a mailing address or a ship‐
ping address. In many contexts, an address is a value, meaning that it doesn’t have an
identity. The address exists as a set of data (value) associated with an entity such as a
customer or company. On the other hand, an entity does have an identity, normally
modeled as an ID field in a database. Because we’re treating it as a value, address
becomes a useful candidate for immutability because we don’t want the value to
change once it’s set.

One interesting feature of C# 9 is called module initialization. Think about how we
use constructors to initialize types or Main to initialize an application. Module initiali‐
zation lets you write initialization code at the scope of an assembly, and you’ll see how
that works.

Another C# 9 theme is code simplification. You’ll see a section on how to write code
without namespaces or classes, eliminating the ceremony around starting an applica‐
tion in a Main method. Another simplification is in instantiating objects, with a new
feature to infer type contextually. Let’s start with simplifying application startup.

279

9.1 Simplifying Application Startup
Problem
You need to eliminate as much code as possible for your application entry point.

Solution
This is a top-level program:

using System;

Console.WriteLine("Address Info:\n");

Console.Write("Street: ");
string street = Console.ReadLine();

Console.Write("City: ");
string city = Console.ReadLine();

Console.Write("State: ");
string state = Console.ReadLine();

Console.Write("Zip: ");
string zip = Console.ReadLine();

Console.WriteLine($@"
 Your address is:

 {street}
 {city}, {state} {zip}");

Here’s the code that the C# compiler generates:

using System;
using System.Runtime.CompilerServices;

[CompilerGenerated]
internal static class <Program>$
{
 private static void <Main>$(string[] args)
 {
 Console.WriteLine("Address Info:\n");
 Console.Write("Street: ");
 string street = Console.ReadLine();
 Console.Write("City: ");
 string city = Console.ReadLine();
 Console.Write("State: ");
 string state = Console.ReadLine();
 Console.Write("Zip: ");
 string zip = Console.ReadLine();
 Console.WriteLine(

280 | Chapter 9: Examining Recent C# Language Highlights

 "\r\n Your address is:\r\n\r\n " + street +
 "\r\n " + city + ", " + state + " " + zip);
 }
}

Discussion
A lot of the code we write is boilerplate—standard syntax that we copy over and over
again. In the case of a console app with a Main method, you have a namespace that
generally matches the project name, a class named Program, and a Main method.
While you’re free to remove the namespace and rename the class, people rarely do.
Developers have recognized this for years, and in C# 9, we no longer need the boiler‐
plate code.

The solution shows the new top-level statements feature, where the code doesn’t have
a namespace, class, or Main method. It’s the minimal amount of code required to start
the app. The example code requests address details and prints out the results and
works exactly as written.

If you’re teaching someone how to program in C#, top-level state‐
ments can make the task easier. You don’t need to explain methods,
because you’re not writing a Main method. You don’t need to
explain a class, which is an object with members and more. You
can leave out the namespace discussion and all the nuance about
naming and organization. Rather than waxing lightly across (or
ignoring) all of these complex details, you can discuss them later,
when the student is ready.

Top-level statements serve in place of the Main method. The solution shows the code
that the compiler generates. It has the CompilerGenerated attribute, class, and Main
method. The naming conventions match the typical boilerplate code that Visual Stu‐
dio, the .NET CLI, and other IDEs produce for console apps.

Interestingly, you can only put top-level statements in a single file. If you try putting
them in multiple files, you’ll encounter the following compiler error:

CS8802 Only one compilation unit can have top-level statements.

9.2 Reducing Instantiation Syntax
Problem
Object instantiation is too redundant and verbose.

9.2 Reducing Instantiation Syntax | 281

Solution
We’re going to instantiate this class:

public class Address
{
 public Address() { }

 public Address(
 string street,
 string city,
 string state,
 string zip)
 {
 Street = street;
 City = city;
 State = state;
 Zip = zip;
 }

 public string Street { get; set; }
 public string City { get; set; }
 public string State { get; set; }
 public string Zip { get; set; }
}

Here are different ways to instantiate that class:

class Program
{
 // doesn't work at this level
 // var address = new Address();

 // this still works
 Address addressOld = new Address();

 // new target typed field
 Address addressNew = new();

 static void Main()
 {
 // these still work
 var addressLocalVar = new Address();
 Address addressLocalOld = new Address();

 // new target typed local variable
 Address addressLocalNew = new();

 // target typed with object ini
 Address addressObjectInit = new()
 {
 Street = "123 4th St.",
 City = "My City",

282 | Chapter 9: Examining Recent C# Language Highlights

 State = "ZZ",
 Zip = "55555-3333"
 };

 // target typed with ctor init
 Address addressCtorInit = new(
 street: "567 8th Ave.",
 city: "Some Place",
 state: "YY",
 zip: "12345-7890");
 }
}

Discussion
Originally, C# had a single way to instantiate a variable: declaring the type, variable
name, new operator, type, and parenthesized constructor parameter list. You can see
this in the solution via the addressOld field and addressLocalOld variable.

Under the C# 3 paradigm, we needed a strongly typed variable (the var keyword) to
hold anonymous types, especially for LINQ queries. A var variable required assign‐
ment and became a strongly typed assigned type. Some people saw that var looked
similar to the JavaScript var and were uncomfortable using it. However, as stated ear‐
lier, the C# var variable is strongly typed, meaning that you can’t declare the variable
to be of a different type.

Besides LINQ, a convenient use case for var emerged in type instantiation. Develop‐
ers recognized the ability to eliminate redundancy in defining variables by using var.
You can see how this works in the solution for the addressLocalVar variable.

Because of the popularity of var to reduce code in object instantiation, developers
looked toward fields for the same experience. However, you can’t use var with fields,
as demonstrated in the address field in the solution, which is commented out.

C# 9 fixes the redundancy concerns with a feature called target-typed new. Instead of
using var, target-typed new declares the type, identifier, and new keyword with a
parameter list. The addressNew field and addressLocalNew variable show how this
works. Now you can instantiate fields without the redundancy of specifying the same
type twice in the same statement.

Target-typed new is shortcut syntax for the same type instantiation we’ve done for‐
ever. That means you can still use object initializers and constructor overloads, shown
in addressObjectInit and addressCtorInit, respectively.

Now that we have target-typed new, there’s an argument to be made for preferring
that over var. The first reason is the cognitive hesitation of developers who eschew
var because it’s spelled the same way as the JavaScript var—even though we know the

9.2 Reducing Instantiation Syntax | 283

C# var is strongly typed. The other is that since we can use target-typed new for both
variables and fields, we have syntactic consistency in how we instantiate types. Some
developers will view mixing var and target-typed new in the same code as distracting
or messy.

Even if you don’t use var for type instantiation, it’s still useful.
When doing LINQ queries, you can reshape data with anonymous
type projections in the same method, and that requires a var for
the results.

Finally, introducing target-typed new into the language doesn’t necessarily imply a
preference for direct object instantiation. As explained in Recipe 1.2, IoC is a power‐
ful mechanism for decoupling code, promoting separation of concerns, and making
code more testable.

See Also
Recipe 1.2, “Removing Explicit Dependencies”

9.3 Initializing Immutable State
Problem
You need immutable properties that are populated only during instantiation.

Solution
Here’s a class with immutable state:

public class Address
{
 public Address() { }

 public Address(
 string street,
 string city,
 string state,
 string zip)
 {
 Street = street;
 City = city;
 State = state;
 Zip = zip;
 }

 public string Street { get; init; }

284 | Chapter 9: Examining Recent C# Language Highlights

 public string City { get; init; }
 public string State { get; init; }
 public string Zip { get; init; }
}

Here are a couple of ways to instantiate the immutable class:

static void Main(string[] args)
{
 Address addressObjectInit = new()
 {
 Street = "123 4th St.",
 City = "My City",
 State = "ZZ",
 Zip = "55555-3333"
 };

 // not allowed
 //addressObjectInit.City = "A Locality";

 // target typed with ctor init
 Address addressCtorInit = new(
 street: "567 8th Ave.",
 city: "Some Place",
 state: "YY",
 zip: "12345-7890");

 // not allowed
 //addressCtorInit.Zip = "98765";
}

Discussion
Immutability, the ability to create and operate on types that don’t change, is increas‐
ingly an important feature for the quality and correctness of code. Imagine the sce‐
nario where you pass an object to a method and get the same type of object back.
Assuming you don’t own the code for that method, how do you know what that
method did to the object you gave it? Short of decompilation or trusting documenta‐
tion, you don’t know. However, if the object is immutable, it can’t change, and you
know that the method didn’t change anything.

Another use case for immutability is in multithreading. The reality of deadlocks and
race conditions have plagued developers for a long time. In the deadlock scenario,
separate threads wait on each other to release a resource that the other needs for
changing. In the race condition scenario, you don’t know which thread will modify an
object first, resulting in inconsistent object state. In each case, immutability simplifies
the scenario because neither thread can change an existing object—they must rely on
their own copy. Multithreading is such a complex topic that it couldn’t be fairly dis‐
cussed here in depth, but the point is that immutability is part of the solution.

9.3 Initializing Immutable State | 285

In the solution, the Address class is immutable. You can instantiate it with the data
you need, but its contents can’t change after that. Notice that the properties have a
getter but not a setter. Instead, they have initters. The initters let you instantiate the
object but not change it thereafter.

The Main method shows how this works. The addressObjectInit variable instanti‐
ates normally, but setting any of its properties, including City, won’t compile. The
addressCtorInit variable shows a similar situation.

If you have an existing class, making properties init-only can be useful. However, if
you’re building new types with C# 9, you can also define records, as discussed in the
next recipe.

See Also
Recipe 9.4, “Creating Immutable Types”

9.4 Creating Immutable Types
Problem
You need an immutable reference type but don’t want to write all the plumbing code.

Solution
Here is a C# record:

record Address(
 string Street,
 string City,
 string State,
 string Zip);

This code shows how to use that record:

static void Main(string[] args)
{
 var addressClassic = new Address(
 Street: "567 8th Ave.",
 City: "Some Place",
 State: "YY",
 Zip: "12345-7890");

 // or

 Address addressCtorInit = new(
 Street: "567 8th Ave.",
 City: "Some Place",
 State: "YY",

286 | Chapter 9: Examining Recent C# Language Highlights

 Zip: "12345-7890");

 // not allowed
 //addressCtorInit.Street = "333 2nd St.";

 Console.WriteLine(
 $"Value Equal: " +
 $"{addressClassic == addressCtorInit}");
 Console.WriteLine(
 $"Reference Equal: " +
 $"{ReferenceEquals(addressClassic, addressCtorInit)}");

 Console.WriteLine(
 $"{nameof(addressClassic)}: {addressClassic}");
 Console.WriteLine(
 $"{nameof(Address)}: {addressCtorInit}");
}

And this is the output:

Value Equal: True
Reference Equal: False
addressClassic: Address
{
 Street = 567 8th Ave., City = Some Place,
 State = YY, Zip = 12345-7890
}
Address: Address
{
 Street = 567 8th Ave., City = Some Place,
 State = YY, Zip = 12345-7890
}

Here’s the synthesized code that the C# compiler generates:

using System;
using System.Collections.Generic;
using System.Runtime.CompilerServices;
using System.Text;
using Section_09_04;

internal class Address : IEquatable<Address>
{
 protected virtual Type EqualityContract
 {
 [CompilerGenerated]
 get
 {
 return typeof(Address);
 }
 }

 public string Street { get; set; }

9.4 Creating Immutable Types | 287

 public string City { get; set; }

 public string State { get; set; }

 public string Zip { get; set; }

 public Address(string Street, string City, string State, string Zip)
 {
 this.Street = Street;
 this.City = City;
 this.State = State;
 this.Zip = Zip;
 base..ctor();
 }

 public override string ToString()
 {
 StringBuilder stringBuilder = new StringBuilder();
 stringBuilder.Append("Address");
 stringBuilder.Append(" { ");
 if (PrintMembers(stringBuilder))
 {
 stringBuilder.Append(" ");
 }
 stringBuilder.Append("}");
 return stringBuilder.ToString();
 }

 protected virtual bool PrintMembers(StringBuilder builder)
 {
 builder.Append("Street");
 builder.Append(" = ");
 builder.Append((object?)Street);
 builder.Append(", ");
 builder.Append("City");
 builder.Append(" = ");
 builder.Append((object?)City);
 builder.Append(", ");
 builder.Append("State");
 builder.Append(" = ");
 builder.Append((object?)State);
 builder.Append(", ");
 builder.Append("Zip");
 builder.Append(" = ");
 builder.Append((object?)Zip);
 return true;
 }

 public static bool operator !=(Address? r1, Address? r2)
 {
 return !(r1 == r2);
 }

288 | Chapter 9: Examining Recent C# Language Highlights

 public static bool operator ==(Address? r1, Address? r2)
 {
 return (object)r1 == r2 || (r1?.Equals(r2) ?? false);
 }

 public override int GetHashCode()
 {
 return
 (((EqualityComparer<Type>.Default.GetHashCode(EqualityContract)
 * -1521134295
 + EqualityComparer<string>.Default.GetHashCode(Street))
 * -1521134295
 + EqualityComparer<string>.Default.GetHashCode(City))
 * -1521134295
 + EqualityComparer<string>.Default.GetHashCode(State))
 * -1521134295
 + EqualityComparer<string>.Default.GetHashCode(Zip);
 }

 public override bool Equals(object? obj)
 {
 return Equals(obj as Address);
 }

 public virtual bool Equals(Address? other)
 {
 return (object)other != null
 && EqualityContract == other!.EqualityContract
 && EqualityComparer<string>.Default.Equals(Street, other!.Street)
 && EqualityComparer<string>.Default.Equals(City, other!.City)
 && EqualityComparer<string>.Default.Equals(State, other!.State)
 && EqualityComparer<string>.Default.Equals(Zip, other!.Zip);
 }

 public virtual Address <Clone>$()
 {
 return new Address(this);
 }

 protected Address(Address original)
 {
 Street = original.Street;
 City = original.City;
 State = original.State;
 Zip = original.Zip;
 }

 public void Deconstruct(
 out string Street, out string City,
 out string State, out string Zip)
 {

9.4 Creating Immutable Types | 289

 Street = this.Street;
 City = this.City;
 State = this.State;
 Zip = this.Zip;
 }
}

Discussion
Recipe 9.3 discusses immutability and its benefits and how to create an immutable
class. This works great if you have existing types and want to migrate them to being
immutable. However, for new code and types that you want to make immutable, con‐
sider using a record.

Records were introduced in C# 9 as a way to create simple immutable types. The sol‐
ution shows how to do this with the Address record. Declare the type as record, give
it a type name, list the properties, and terminate with a semicolon. Although this
might look similar to defining a constructor or method, the parameters define the
properties of this new type, and they follow the common convention of Pascal case
naming.

The solution shows how to instantiate the Address record. Notice how the address
CtorInit variable doesn’t allow changing its state, including the Street property.

An interesting fact about records is that they are reference types with value semantics.
The solution shows that comparing addressClassic and addressCtorInit with ==
results in true. This demonstrates value equality because the properties of both
records are identical. However, notice the ReferenceEquals comparison. It’s false
because records are reference types and each refers to separate objects in memory.

Although declaring the Address record was short and quick, this is a huge simplifica‐
tion of the real code that the C# compiler generates. The solution shows the synthe‐
sized code with many members. The type is a class and it has a constructor overload
with parameters for populating each property.

The key to value equality is the implementation of IEquatable<Address>. The class
has both a weakly typed and strongly typed Equals method. Recipe 2.5 showed how
to implement IEquatable<T>, which shares some similarity to this implementation.
One difference is the type being stored in the EqualityContract property. Since the
C# generated class uses EqualityContract in both Equals and GetHashCode, it
makes sense to eliminate the redundancy.

The ToString and PrintMembers implementations might be familiar if you’ve read
Recipe 3.6. The implementations are nearly identical. Notice that the PrintMembers is
virtual, and that allows derived types to add their values to the output.

290 | Chapter 9: Examining Recent C# Language Highlights

Finally, the synthesized class includes a Clone method to get a shallow copy, a decon‐
structor for representing values as a tuple, and a copy constructor for making a copy
of another record. What would also be convenient is a way to get a copy of the cur‐
rent object but with modifications, which is discussed next.

See Also
Recipe 2.5, “Checking for Type Equality”

Recipe 3.6, “Customizing Class String Representation”

Recipe 9.3, “Initializing Immutable State”

9.5 Simplifying Immutable Type Assignments
Problem
You need to change a property of an object but don’t want to mutate the original
object.

Solution
We’ll use this record:

record Address(
 string Street,
 string City,
 string State,
 string Zip);

And this code shows how to make a copy of that record:

static void Main(string[] args)
{
 Address addressPre = new(
 Street: "567 8th Ave.",
 City: "Some Place",
 State: "YY",
 Zip: "12345-7890");

 Address addressPost =
 addressPre with
 {
 Street = "569 8th Ave."
 };

 Console.WriteLine($"Pre: {addressPre}");
 Console.WriteLine($"Post: {addressPost}");

 Console.WriteLine(

9.5 Simplifying Immutable Type Assignments | 291

 $"Value Equal: " +
 $"{addressPre == addressPost}");
}

Discussion
As discussed in Recipe 9.4, records have a normal constructor, a copy constructor,
and a clone method to create new records of the same type. There’s one scenario that
these options don’t easily cover: getting a type with modifications. That is, what if you
wanted everything on the object to be the same, except for one or two properties?
This section shows a simple way to do that.

Since records are immutable, you can’t modify any of their properties. You could
always instantiate a new record and supply all of the properties, but that is wasteful
when only a single property changes, especially if it’s an object with a lot of
properties.

The solution in C# 9 uses a with expression. You have an existing record, add a with
expression, and only change the properties that need to change. This gives you a new
instance of the record type with the changes you want.

The solution does this on the addressPre variable. The with expression uses a block
of property assignments to specify the properties that need to change. This example
changes a single property. You can also set multiple properties in the same way you
do with object initializers, via a comma-separated list.

See Also
Recipe 9.4, “Creating Immutable Types”

9.6 Designing for Record Reuse
Problem
You need to avoid duplicating functionality.

Solution
Here’s an abstract base record:

public abstract record AddressBase(
 string Street,
 string City,
 string State,
 string Zip);

These two records derive from that abstract base record:

292 | Chapter 9: Examining Recent C# Language Highlights

public record MailingAddress(
 string Street,
 string City,
 string State,
 string Zip,
 string Email,
 bool PreferEmail)
 : AddressBase(Street, City, State, Zip);

public record ShippingAddress : AddressBase
{
 public ShippingAddress(
 string street,
 string city,
 string state,
 string zip,
 string deliveryInstructions)
 : base(street, city, state, zip)
 {
 if (street.Contains("P.O. Box"))
 throw new ArgumentException(
 "P.O. Boxes aren't allowed");

 DeliveryInstructions = deliveryInstructions;
 }

 public string DeliveryInstructions { get; init; }
}

Here’s how you can work with those records:

static void Main(string[] args)
{
 MailingAddress mailAddress = new(
 Street: "567 8th Ave.",
 City: "Some Place",
 State: "YY",
 Zip: "12345-7890",
 Email: "me@example.com",
 PreferEmail: true);

 ShippingAddress shipAddress = new(
 street: "567 8th Ave.",
 city: "Some Place",
 state: "YY",
 zip: "12345-7890",
 deliveryInstructions: "Ring Doorbell");

 Console.WriteLine($"Mail: {mailAddress}");
 Console.WriteLine($"Ship: {shipAddress}");

 Console.WriteLine(
 $"Derived types equal: " +

9.6 Designing for Record Reuse | 293

 $"{mailAddress == shipAddress}");

 AddressBase mailBase = mailAddress;
 AddressBase shipBase = shipAddress;
 Console.WriteLine(
 $"Base types equal: " +
 $"{mailBase == shipBase}");
}

Discussion
One of the ways to achieve reuse in C# is via inheritance. Records support inheritance
in the same manner as classes.

The solution has a record named AddressBase. As its name suggests, AddressBase is
intended to be a base record. AddressBase is also abstract, preventing direct instan‐
tiation. It has properties common to all derived types.

MailingAddress and ShippingAddress derive from AddressBase, using the inheri‐
tance syntax similar to classes. The difference is that the inherited record declaration
includes a parameter list, indicating which parameters from the derived record match
the base record.

MailingAddress specializes AddressBase with two new properties: Email and
PreferEmail. ShippingAddress specializes AddressBase with an extra Delivery
Instructions property.

The definition of ShippingAddress is different because it explicitly defines members,
rather than using default record syntax. It has a constructor, just like a C# class,
passing parameters to the base, AddressBase. The ShippingAddress constructor
implementation has validation code that throws an exception to protect against inva‐
lid initialization. In this case, it enforces the logic that a P.O. box is not a place you
can deliver merchandise to. The constructor also initializes the DeliveryInstruc
tions property. This demonstrates that while default record syntax simplifies the
code, you still have the ability to customize records all you need.

When customizing records, you can add any member that a class could have. Addi‐
tionally, you can override default implementations such as equality, ToString output,
or constructors. Also, customizing as done with ShippingAddress doesn’t prevent the
C# compiler from generating the default record implementation.

9.7 Returning Different Method Override Types
Problem
You’re overriding a base class method but need to return a more specific type.

294 | Chapter 9: Examining Recent C# Language Highlights

Solution
Here are the records we want to work with:

public abstract record AddressBase(
 string Street,
 string City,
 string State,
 string Zip);

public record MailingAddress(
 string Street,
 string City,
 string State,
 string Zip,
 string Email,
 bool PreferEmail)
 : AddressBase(Street, City, State, Zip);

public record ShippingAddress : AddressBase
{
 public ShippingAddress(
 string street,
 string city,
 string state,
 string zip,
 string deliveryInstructions)
 : base(street, city, state, zip)
 {
 if (street.Contains("P.O. Box"))
 throw new ArgumentException(
 "P.O. Boxes aren't allowed");

 DeliveryInstructions = deliveryInstructions;
 }

 public string DeliveryInstructions { get; init; }
}

This base class has a method, returning a base record:

abstract class DeliveryBase
{
 public abstract AddressBase GetAddress(string name);
}

These classes have methods returning derived records:

class Communications : DeliveryBase
{
 public override MailingAddress GetAddress(string name)
 {
 return new(
 Street: "567 8th Ave.",

9.7 Returning Different Method Override Types | 295

 City: "Some Place",
 State: "YY",
 Zip: "12345-7890",
 Email: "me@example.com",
 PreferEmail: true);
 }
}

class Shipping : DeliveryBase
{
 public override ShippingAddress GetAddress(string name)
 {
 return new(
 street: "567 8th Ave.",
 city: "Some Place",
 state: "YY",
 zip: "12345-7890",
 deliveryInstructions: "Ring Doorbell");
 }
}

This code shows how to use those derived classes that return derived records:

static void Main(string[] args)
{
 Communications comm = new();
 MailingAddress mailAddr = comm.GetAddress("Person A");
 Console.WriteLine(mailAddr);

 Shipping ship = new();
 ShippingAddress shipAddr = ship.GetAddress("Person B");
 Console.WriteLine(shipAddr);
}

Discussion
It used to be that method overrides were required to return the same type as the base
class virtual method return type. The problem was that derived classes often needed
to return specialized information from their overrides. The alternatives were ugly:

1. Create a new nonpolymorphic method.
2. Return the base type.
3. Return a type derived from the base return type and expect the caller to convert.

None of these choices are optimal, and fortunately, C# 9 offers a solution through
covariant return types.

The solution has two sets of type hierarchies: one for return types and one for
method polymorphism. AddressBase and its two derived records, MailingAddress
and ShippingAddress, represent the return types. The DeliveryBase class, with its

296 | Chapter 9: Examining Recent C# Language Highlights

derived classes, Communications and Shipping, have a GetAddress method that oper‐
ates polymorphically.

Notice how the implementation of GetAddress returns target-
typed new instances. The compiler infers type by context, which is
the return type in these examples. You can learn more about target-
typed new in Recipe 9.2.

Prior to C# 9, the GetAddress in Communications and Shipping would be forced to
return AddressBase. However, looking at the solution implementation, the GetAdd
ress in Communications and Shipping return MailingAddress and Shipping Add
ress, respectively.

See Also
Recipe 9.2, “Reducing Instantiation Syntax”

9.8 Implementing Iterators as Extension Methods
Problem
You need an iterator on a third-party type for which you don’t have the code.

Solution
Here’s a definition to a type in a third-party library that we don’t have access to:

public record Address(
 string Street,
 string City,
 string State,
 string Zip);

This class has an enumerator extension method for that type:

public static class AddressExtensions
{
 public static IEnumerator<string> GetEnumerator(
 this Address address)
 {
 yield return address.Street;
 yield return address.City;
 yield return address.State;
 yield return address.Zip;
 yield break;
 }
}

9.8 Implementing Iterators as Extension Methods | 297

Here’s how to use that enumerator:

class Program
{
 static void Main()
 {
 IEnumerable<Address> addresses = GetAddresses();

 foreach (var address in addresses)
 {
 foreach (var line in address)
 Console.WriteLine(line);

 Console.WriteLine();
 }
 }

 static IEnumerable<Address> GetAddresses()
 {
 return new List<Address>
 {
 new Address(
 Street: "567 8th Ave.",
 City: "Some Place",
 State: "YY",
 Zip: "12345-7890"),
 new Address(
 Street: "569 8th Ave.",
 City: "Some Place",
 State: "YY",
 Zip: "12345-7890")
 };
 }
}

Discussion
Sometimes, it’s convenient to add an iterator to an object. Doing so lets you separate
the concerns of dissecting, transforming, and returning object data from the consum‐
ing code that wants to concentrate on solving the business problem. If you own the
code of an object and want to loop over its contents, add an iterator. However, if the
object is from a third party and you don’t have access to the code, you used to be
forced to add extraneous logic to business code. In C# 9, you now have the ability to
add a GetEnumerator method as an extension method.

In the solution, the Address record is the object we want to iterate over. More specifi‐
cally, we want to iterate on the members of the Address record, similar to the way you
can iterate over properties of a JavaScript object.

298 | Chapter 9: Examining Recent C# Language Highlights

The AddressExtensions method has an extension method named GetEnumerator
that takes an Address parameter and returns an IEnumerable<T>. The this parame‐
ter works just like for any other extension method, specifying the type and instance to
operate on. The pattern for the iterator is that the method must be named GetEnumer
ator, and it must return an IEnumerator<T>. The type, T, can be any type of your
choosing—whatever you need. In this example, T is string. This means that you need
to convert each property to a string, which isn’t a problem in Address because all
properties are already a string. Consistent with C# iterator implementation, the
AddressExtensions GetEnumerator method uses yield return for each value and
yield break to indicate the end of iteration.

After getting a list of Address, the Main method has a nested foreach loop where the
inner foreach iterates on an instance of Address. Because of the extension method,
the foreach works on address the same as it does with arrays and collections—no
extra syntax.

9.9 Slicing Arrays
Problem
You want to use ranges to page through data.

Solution
We’re going to use this record:

public record Address(
 string Street,
 string City,
 string State,
 string Zip);

This method populates an array of records:

Address[] GetAddresses()
{
 int count = 15;
 List<Address> addresses = new();

 for (int i = 0; i < count; i++)
 {
 string streetSuffix =
 i switch
 {
 0 => "st",
 1 => "nd",
 2 => "rd",
 _ => "th"

9.9 Slicing Arrays | 299

 };

 addresses.Add(
 new(
 Street: $"{i+100} {i+1}{streetSuffix} St.",
 City: "My Place",
 State: "ZZ",
 Zip: "12345-7890"));
 }

 return addresses.ToArray();
}

This method does paging by slicing an array of records:

public IEnumerable<Address[]> GetAddresses(int perPage)
{
 Address[] addresses = GetAddresses();

 for (int i = 0, j = i+perPage;
 i < addresses.Length;
 i+=perPage, j+=perPage)
 {
 yield return addresses[i..j];
 }
}

This code iterates through pages of the record:

static void Main()
{
 AddressService addressSvc = new();

 foreach (var addresses in
 addressSvc.GetAddresses(perRow: 3))
 {
 foreach (var address in addresses)
 {
 Console.WriteLine(address);
 }

 Console.WriteLine("\nNew Page\n");
 }
}

Discussion
Since C# 8, it has been much easier to slice arrays. Specify the beginning index, con‐
catenate two dots, and specify the last index.

300 | Chapter 9: Examining Recent C# Language Highlights

This solution looks at slicing from the perspective of paging. Some of the applications
we use page by number of rows or number of columns in a row. This solution pages
Address instances by three per page.

There are two overloads of the GetAddresses method. The first, parameterless ver‐
sion, generates unique addresses.

The second GetAddresses overload is an iterator that takes an int parameter, per
Page, instructing the method to return that many instances of Address at one time.
After getting a list of Address instances, the for loop controls iterating through the
list. The for initializer sets i to the first Address and j to one more than the last
Address. Since i is the start of the range, the for condition ensures that i doesn’t
exceed the size of the array. The for incrementer adjusts i and j to the next set of
Address instances (that is, the next page).

GetAddresses(int perPage) is an iterator, as indicated by the IEnumera

ble<Address[]> return type and the fact that it uses yield return on results. While
Recipe 9.8 showed how to add an iterator as an extension method, this example
assumes you have access to the code and adding an iterator directly to the code is
preferable.

The Main method shows how to use the GetAddresses(int perPage) iterator,
returning the page that was sliced out of the original Address[].

See Also
Recipe 9.8, “Implementing Iterators as Extension Methods”

9.10 Initializing Entire Modules
Problem
You need IoC to work on a class library without relying on the caller to do it right.

Solution
Here’s a repository that returns records:

public record Address(
 string Street,
 string City,
 string State,
 string Zip);

public interface IAddressRepository
{
 List<Address> GetAddresses();

9.10 Initializing Entire Modules | 301

}

public class AddressRepository : IAddressRepository
{
 public List<Address> GetAddresses() =>
 new List<Address>
 {
 new (
 Street: "123 4th St.",
 City: "My Place",
 State: "ZZ",
 Zip: "12345-7890"),
 new (
 Street: "567 8th Ave.",
 City: "Some Place",
 State: "YY",
 Zip: "12345-7890"),
 new (
 Street: "567 8th Ave.",
 City: "Some Place",
 State: "YY",
 Zip: "12345-7890")
 };
}

This module initializer configures an IoC container:

class Initializer
{
 internal static ServiceProvider Container { get; set; }

 [ModuleInitializer]
 internal static void InitAddressUtilities()
 {
 var services = new ServiceCollection();
 services.AddTransient<AddressService>();
 services.AddTransient<IAddressRepository, AddressRepository>();
 Container = services.BuildServiceProvider();
 }
}

This service relies on the IoC container:

public class AddressService
{
 readonly IAddressRepository addressRep;

 public AddressService(IAddressRepository addressRep) =>
 this.addressRep = addressRep;

 public static AddressService Create() =>
 Initializer.Container.GetRequiredService<AddressService>();

 public List<Address> GetAddresses() =>

302 | Chapter 9: Examining Recent C# Language Highlights

 (from address in addressRep.GetAddresses()
 select address)
 .Distinct()
 .ToList();
}

This Main method is a client that consumes the service:

static void Main()
{
 AddressService addressSvc = AddressService.Create();

 addressSvc
 .GetAddresses()
 .ForEach(address =>
 Console.WriteLine(address));
}

Discussion
C# 9 added a feature called module initialization. Essentially, this allows you to add
any kind of initialization code for an assembly. This initialization code runs before
any other code in the assembly.

At first glance, this might sound strange because console, Windows Forms, and WPF
apps have Main methods. Even all versions of ASP.NET and Web API have startup
code. I’m not saying that there isn’t a use case for those technologies, though it seems
like a rare event for the average professional developer.

Another initialization technique that has existed since C# 1 is the
use of static constructors. A static constructor only runs whenever
code accesses class members, either via type or instance. So, a static
constructor isn’t a valid substitute for module initialization because
it’s possible that calling code will never access a member of that
class, and the static constructor will never run.

That said, there is a set of use cases that involve class libraries. The problem has
always been that you don’t know how consuming code will use your library. You can
document and set a contract that says the user must call some method or start the
library a certain way, and that’s as close as you get to guaranteeing any type of control
over initialization.

Module initialization changes that because now you have more control over how to
initialize library code, regardless of what the user does. The solution solves the prob‐
lem of ensuring that IoC gets initialized before any code runs.

The AddressService class offers two ways to instantiate an instance of itself, via IoC
or with the Create method. The user has a choice of whether to use IoC or not. The

9.10 Initializing Entire Modules | 303

benefit is that IoC becomes an option for the library developer too for making it easy
to write unit tests and write maintainable code.

Recipe 1.2 explains how IoC works, using Microsoft.Extensions.Dependency
Injection, and this solution uses the same library and technique. The main differ‐
ence is where the IoC container gets configured.

The Initializer class has a method named InitAddressUtilities. The Module
Initializer attribute indicates that InitAddressUtilities is the module initializa‐
tion code for this class library. The InitAddressUtilities method will run before
any other code in the class library.

In the early days of .NET, a module was a way to group code into a
single file, for modularization. You could combine modules into an
assembly, where the assembly was defined as being one or more
modules with an additional manifest. The manifest contains meta-
data for the CLR, the details of which are voluminous and unim‐
portant for the current focus.
Using modules was largely a theoretical capability, as most code is
compiled as a single module in an assembly. This is the default
behavior for the C# compiler and Visual Studio. In fact, you had to
go out of your way to create a module that was potentially useful.
While it’s interesting that the ModuleInitializer has the word
“module” in it, the practical reality is that it applies toward initiali‐
zation at the level of the assembly.

Because the InitAddressUtilities method has already run, the Create method in
AddressService can rely on Initializer.Container having a valid container refer‐
ence for resolving an AddressService instance.

See Also
Recipe 1.2, “Removing Explicit Dependencies”

304 | Chapter 9: Examining Recent C# Language Highlights

Summary
In many ways, this book has been a reflection of my own career. In one form or
another, each recipe represents solutions to problems that I and others have encoun‐
tered over the years. However, it’s more than that because the thought process that
goes into each recipe, chapter, and the entire book has been illuminating. The way we
write code today has changed a lot. So have the types of applications we write.

C# was born in an era of the internet coming of age, when the .com bust of the early
2000s was barely conceivable. The impetus behind its creation was the legal battles
between Microsoft and Sun Microsystems over the Java programming language.
Microsoft needed a component-based programming language for its new .NET plat‐
form. It was the early days of distributed computing, and visions of proprietary
remoting technology and XML Web services have come and gone. Today is a differ‐
ent world.

In the intervening years, we’ve seen revolutions that changed the entire face of com‐
puting. Mobile phones evolved into smart phones with more computing power than
the original IBM PC. Applications and entire businesses moved from hosted services
to the cloud. Client/server and nascent distributed computing models became mas‐
sive world-scale native cloud applications using microservice architectures and serv‐
erless computing. The types of applications we build are different.

So, as the computing world has evolved, the programming languages and tools we use
must embrace that change. That was the goal with this book, and I hope it helps you.
I’m honored to have shared this journey with you and wish you the best in your C#
development career.

Index

Symbols
[] (square brackets), 180

A
AAA (Arrange, Act, and Assert) pattern, 70
adapter class, 28-30
algorithms, coding, 37-66

caching frequently requested data, 58-60
checking for type equality, 48-51
converting from/to Unix time, 55-58
delaying type instantiation, 60-63
keeping logic local, 43-44
maintainability, 37
measuring performance, 94-96
mindset, 38
operating on multiple classes the same way,

45-48
parsing data files, 63-66
performance, 37
processing data hierarchies, 52-55
processing strings efficiently, 38-41
simplifying instance cleanup, 41-42

API keys, 219-221
applications

designing application layers, 16-21
making classes adapt to your interface,

28-30
performing interop with Office apps,

164-169
simplifying startup, 280-281

Arrange, Act, and Assert (AAA) pattern, 70
arrays, slicing, 299-301
as operator, 256
async language syntax, 181

(see also asynchronous programming)
calling synchronous code from async code,

195-197
introduction in C# 4, 181

async Main, 183
asynchronous programming, 181-214

calling synchronous code from async code,
195-197

canceling async operations, 206-209
creating async console applications, 182-184
creating async iterators, 187-190
disposing async resources, 209-214
handling parallel tasks as they complete,

201-205
reducing memory allocations for async

return values, 184-186
updating progress asynchronously, 193-195
waiting for parallel tasks to complete,

198-201
writing safe async libraries, 190-193

attributes, reading with reflection, 140-144

B
Big Ball of Mud (BBoM) antipattern, 17
boilerplate code, 281

C
caching, 58-60
class

converting from legacy to strongly typed
classes, 24-28

customizing class string representation,
83-85

delegating object creation to, 10-12

307

making classes adapt to your interface,
28-30

operating on multiple classes the same way,
45-48

code simplification
simplifying application startup, 280-281
simplifying immutable type assignments,

291-292
simplifying instance cleanup, 41-42
simplifying parameter validation, 74-75
simplifying queries, 120-123
simplifying switch assignments, 258-261

concatenation
avoiding, 111-116
efficiently processing of strings for, 38-41

concurrency, 134-137
console applications, async, 182-184
Crypto class, 219-221
custom exception type, 30-33
custom shapes, 98-100

D
data

aggregating into custom groups, 108-111
caching frequently requested data, 58-60
creating an inherently dynamic type,

169-172
joining, 100-104
manipulating (see manipulating data)

data files, parsing, 63-66
date/time information

converting from/to Unix time, 55-58
flexible datetime reading, 249-252

DateTime values, 249-252
deadlock, 285
debugging, 85-90

(see also exception handling)
rethrowing exceptions, 85-90

deferred query execution, 115
delegation

delegating object creation to a class, 10-12
delegating object creation to a method,

12-16
DeMorgans Theorem, 275
dependencies, removing explicit, 6-9
dependency injection, 8
dictionary attack, 218
dispose pattern

disposing async resources, 209-214

end-of-lifetime management, 2-6
Distinct operator (LINQ), 119
DLR (see dynamic language runtime)
duplicate objects, removing, 116-120
dynamic

adding/removing type members dynami‐
cally, 172-174

calling C# code from Python, 177-180
calling Python code from C#, 174-177
creating an inherently dynamic type,

169-172
defined, 139
implementing, 162-180
performing interop with Office apps,

164-169
reflection versus, 164
replacing reflection with dynamic code,

162-164
dynamic keyword, 139
dynamic language runtime (DLR), 139, 164,

176
DynamicObject type, 169-172

E
encryption of secrets, 219-221
end-of-lifetime management, 2-6
equality

checking for type equality, 48-51
reference versus value, 50

error prevention, 67
exception handling

catching filtered exceptions, 257-258
designing a custom exception, 30-33
managing process status, 90-91
rethrowing exceptions, 85-90

ExpandObject, 172-174
explicit dependencies, removing, 6-9
expression trees, building a query filter with,

127-134
extensible applications, 45-48
extension methods, implementing iterators as,

297-299

F
factory class, 11
filters

building a query filter with expression trees,
127-134

catching filtered exceptions, 257-258

308 | Index

G
generic types, instantiating with reflection,

150-159
grouping data, 108-111

H
hashing, for passwords, 215-218
hierarchical data

aggregating into custom groups, 108-111
processing hierarchies, 52-55

I
immutability, 279

creating immutable types, 286-291
initializing immutable state, 284-286
simplifying immutable type assignments,

291-292
impedance mismatch, 97
incremental queries, 111-116
inheritance, 294
initialization

entire modules, 301-304
initializing immutable state, 284-286

injection attack, 40, 115
instances

converting safely, 253-257
simplifying cleanup, 41-42

instantiation
delaying, 60-63
reducing instantiation syntax, 281-284
reducing syntax for, 281-284
reflection for, 150-159

interfaces
making classes adapt to your interface,

28-30
versioning safely, 72-74

interop, performing with Office apps, 164-169
inversion of control (IoC)

when delegating object creation to a class,
10-12

when removing explicit dependencies, 8-9
is operator, 256
iterative algorithms, processing data hierar‐

chies, 52-55
iterators

creating async iterators, 187-190
implementing as extension methods,

297-299

J
joins

left joins, 104-108
for querying with LINQ, 100-104

JSON
consuming, 227-232
customizing output formatting, 224-227
working with JSON data, 232-239

L
layers, designing, 16-21
Lazy<T>, 62
left joins, 104-108
legacy code, converting instances safely from,

253-257
legacy type, converting to strongly typed

classes, 24-28
let clause (LINQ), 122
libraries

protecting code from NullReferenceExcep‐
tion, 76-80

writing safe async libraries, 190-193
lifetime management, 2-6
LINQ to Objects, 97
LINQ, querying with, 97-137

building a query filter with expression trees,
127-134

building incremental queries, 111-116
grouping data, 108-111
joining data, 100-104
operating on sets, 123-127
performing left joins, 104-108
querying distinct objects, 116-120
querying in parallel, 134-137
simplifying queries, 120-123
transforming object shape, 98-100

Linux, date/time data conversion, 55-58
list (data structure), 180
local methods, 43-44

M
magic strings

avoiding, 81-83
defined, 82

maintainability, of code, 67
manipulating data, 215-252

consuming JSON, 227-232
consuming XML, 239-242

Index | 309

encoding/decoding URL parameters,
246-249

encrypting/decrypting secrets, 219-221
flexible datetime reading, 249-252
generating password hashes, 215-218
hiding development secrets, 222-223
producing JSON, 224-227
producing XML, 243-246
working with JSON data, 232-239

materialization, 111
measuring performance, 94-96
memory, reducing allocations for async return

values, 184-186
method overrides, 294-297
methods

delegating object creation to, 12-16
invoking with reflection, 159-161
returning multiple values from, 21-24

Microsoft Office, performing interop with apps,
164-169

module initialization, 301-304
multiconditional logic, 273-275
multithreading, 285

(see also asynchronous programming)
initializing immutable state, 285
querying in parallel, 134-137

N
networks

building resilient network connections,
91-94

encoding/decoding URL parameters,
246-249

NullReferenceException, protecting code from,
76-80

O
objects

with complex configuration, 33-35
delaying instantiation, 60-63
delegating to a class, 10-12
delegating to a method, 12-16
end-of-lifetime management, 2-6
transforming shapes, 98-100

Office, performing interop with apps, 164-169
out-of-process communication, 181

(see also asynchronous programming)
overriding base class method, 294-297

P
Parallel LINQ (PLINQ), 137
parallel tasks

handling parallel tasks as they complete,
201-205

waiting for parallel tasks to complete,
198-201

parameter validation
brief syntax, 74
simplifying, 74-75
verbose syntax, 74

password management, 215-218
pattern matching, 253-277

catching filtered exceptions, 257-258
converting instances safely, 253-257
simplifying switch assignments, 258-261
switching on position, 266-268
switching on property values, 261-263
switching on tuples, 263-265
switching on type, 275-277
switching on value ranges, 269-270
switching with complex conditions, 270-273
using logical conditions, 273-275

performance, measuring, 94-96
PLINQ (Parallel LINQ), 137
plug-in frameworks, delegating object creation

to a method for, 12-16
primary interop assemblies (PIAs), 168
process status, managing, 90-91
programming asynchronously (see asynchro‐

nous programming)
projection, 99
properties

simplifying immutable type assignments,
291-292

switching on property values, 261-263
Python

calling C# code from, 177-180
calling Python code from C#, 174-177

Q
quality assurance, 67-96

avoiding magic strings, 81-83
building resilient network connections,

91-94
customizing class string representation,

83-85
managing process status, 90-91
measuring performance, 94-96

310 | Index

protecting code from NullReferenceExcep‐
tion, 76-80

rethrowing exceptions, 85-90
simplifying parameter validation, 74-75
versioning interfaces safely, 72-74
writing a unit test, 68-71

queries (see LINQ, querying with)

R
race condition, 285
rainbow attack, 218
records

creating immutable types, 286-291
designing for reuse, 292-294
returning different method override types,

294-297
simplifying immutable type assignments,

291-292
value equality and, 51

recursion, processing data hierarchies and,
52-55

reference type equality
checking for, 48-51
defined, 50

reference types, immutable, 286-291
reflection

accessing type members with, 144-150
defined, 139
dynamic versus, 164
implementing, 139-161
instantiating type members with, 150-159
invoking methods with, 159-161
reading attributes with, 140-144
replacing with dynamic code, 162-164

regular expressions, 64-66
resilience, 91-94
rethrowing exceptions, 85-90
reusable libraries, 76-80
reusable records, designing for, 292-294

S
Secret Manager, 222
secrets

defined, 215
encrypting/decrypting, 219-221
hiding development secrets, 222-223

security
building incremental queries, 111-116
encrypting/decrypting secrets, 219-221

generating password hashes, 215-218
hiding development secrets, 222-223
SQL injection attacks and string concatena‐

tion, 40, 114
separation of concerns, 1, 18
sets, combining without duplication, 123-127
simplifying code (see code simplification)
simplifying queries, 120-123
slicing arrays, 299-301
social media data, 174-177
spaghetti code, 18
SQL injection attack, 40, 115
square brackets ([]), 180
state, initializing immutable, 284-286
status updates, 193-195
strings

avoiding concatenation, 111-116
customizing class string representation,

83-85
parsing data files, 63-66
processing efficiently, 38-41

strongly typed classes, 24-28
switch statements/switch expressions

simplifying switch assignments, 258-261
switch statements versus switch expressions,

260
switching on position, 266-268
switching on property values, 261-263
switching on tuples, 263-265
switching on type, 275-277
switching with complex conditions, 270-273
using logical conditions, 273-275

synchronous code, calling from async code,
195-197

T
target-typed new, 283
task cancellation, 206-209
Task class, 185
Task Parallel Library (TPL), 181
Task.WhenAny, 201-205
template pattern, 158
testing, 68-71
textual data (see strings)
tightly coupled (term), 7
tightly coupled applications, removing explicit

dependencies from, 6-9
top-level statements, 280-281
ToString method, 83-85

Index | 311

TPL (Task Parallel Library), 181
troubleshooting (see exception entries)
tuples

returning multiple values from a method,
21-24

switching on, 263-265
switching on position, 266-268

type assignments, 291-292
type equality, checking for, 48-51
type instantiation

delaying, 60-63
reducing instantiation syntax, 281-284
reflection for, 150-159

type members
accessing with reflection, 144-150
adding/removing dynamically, 172-174

type safety, 150-159
types

applying patterns, 1
checking for equality, 48-51
constructing, 1-16
constructing objects with complex configu‐

ration, 33-35
converting from legacy to strongly typed

classes, 24-28
creating an inherently dynamic type,

169-172
delegating object creation to a class, 10-12
delegating object creation to a method,

12-16
designing a custom exception, 30-33
establishing architecture for, 1
instantiating members with reflection,

150-159
managing object end-of lifetime, 2-6
managing object lifetime, 2
removing explicit dependencies, 6-9
returning multiple values from a method,

21-24

simplifying immutable type assignments,
291-292

U
UI thread, writing safe async libraries for,

190-193
unit tests, 68-71
Unix, date/time data conversion, 55-58
URLs, encoding/decoding parameters, 246-249
using statements, 41

V
validation (see parameter validation)
value equality, 50
value ranges, switching on, 269-270
values, returning from a method, 21-24
ValueTask, 184, 186
var variable, 283
variables

for avoiding magic strings, 82
reducing instantiation syntax, 281-284

versioning, of interfaces, 72-74
Visual Studio Tools for Office (VSTO), 168

W
WhereOr operation (LINQ), 131-134

X
XML

consuming, 239-242
converting an object to XML, 243-246
converting XML document to an object,

239-242
producing, 243-246

XUnit, 69

312 | Index

About the Author
Joe Mayo is an author, instructor, and independent consultant who has been working
with C# and .NET since their announcement in the summer of the year 2000. As an
independent consultant, he’s worked with a variety of organizations, from startups to
Fortune 500 enterprises. His experience in this journey includes desktop, web,
mobile, cloud, and AI technologies. In addition to practical hands-on application, he’s
also taught C# and .NET for many years via in-person, live video, and recorded video
courses. His top open source project is LINQ to Twitter, with over 1.5 million NuGet
downloads. When Joe isn’t serving valued customers, he contributes to the commu‐
nity through Q&A forums, presenting, and (one of his favorite pastimes) writing.

Colophon
The animal on the cover of C# Cookbook is a northern copperhead snake (Agkistro‐
don contortrix), a poisonous snake native to North America. Their range includes
most of the United States east of the Mississippi River. Northern copperheads live in
rocky, forested, and wetland environments.

Young northern copperheads cannot count on their parents’ support after they’re
born, and they have adapted a bright yellow tail tip to help them lure prey as they
grow. Mature northern copperheads are sexually dimorphic; females are larger than
males, and males have longer tails. They grow to 24–37 inches long and live, on aver‐
age, about 18 years. Their coloring is copper or reddish brown, with an hourglass pat‐
tern in darker shades down their back. Northern copperhead snakes have spade-
shaped heads with a heat-sensing organ common to all pit vipers, as well as tongues
that help them “smell” prey.

These snakes eat small mammals, small birds, other reptiles, amphibians, and insects.
They will strike humans if they feel threatened, but the attacks are rarely fatal. North‐
ern copperheads prefer to hide, waiting to surprise their prey. In winter, they hiber‐
nate with large groups of other snakes—sometimes other species of snakes.

Many of the animals on O’Reilly’s covers are endangered; all of them are important to
the world.

The cover illustration is by Jose Marzan, based on a black and white engraving from
Lydekker’s Royal Natural History. The cover fonts are Gilroy Semibold and Guardian
Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Con‐
densed; and the code font is Dalton Maag’s Ubuntu Mono.

https://oreil.ly/1YEZ8

There’s much more
where this came from.
Experience books, videos, live online
training courses, and more from O’Reilly
and our 200+ partners—all in one place.

Learn more at oreilly.com/online-learning

©
20

19
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. |
 17

5

https://oreilly.com

	Copyright
	Table of Contents
	Preface
	Why I Wrote This Book
	Who This Book Is For
	How This Book Is Organized
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Chapter 1. Constructing Types and Apps
	Establishing Architecture
	Applying Patterns
	Managing Object Lifetime
	1.1 Managing Object End-of-Lifetime
	Problem
	Solution
	Discussion

	1.2 Removing Explicit Dependencies
	Problem
	Solution
	Discussion
	See Also

	1.3 Delegating Object Creation to a Class
	Problem
	Solution
	Discussion
	See Also

	1.4 Delegating Object Creation to a Method
	Problem
	Solution
	Discussion
	See Also

	1.5 Designing Application Layers
	Problem
	Solution
	Discussion

	1.6 Returning Multiple Values from a Method
	Problem
	Solution
	Discussion

	1.7 Converting from Legacy to Strongly Typed Classes
	Problem
	Solution
	Discussion

	1.8 Making Classes Adapt to Your Interface
	Problem
	Solution
	Discussion

	1.9 Designing a Custom Exception
	Problem
	Solution
	Discussion

	1.10 Constructing Objects with Complex Configuration
	Problem
	Solution
	Discussion
	See Also

	Chapter 2. Coding Algorithms
	Performance
	Maintainability
	Mindset
	2.1 Processing Strings Efficiently
	Problem
	Solution
	Discussion
	See Also

	2.2 Simplifying Instance Cleanup
	Problem
	Solution
	Discussion
	See Also

	2.3 Keeping Logic Local
	Problem
	Solution
	Discussion

	2.4 Operating on Multiple Classes the Same Way
	Problem
	Solution
	Discussion
	See Also

	2.5 Checking for Type Equality
	Problem
	Solution
	Discussion

	2.6 Processing Data Hierarchies
	Problem
	Solution
	Discussion

	2.7 Converting from/to Unix Time
	Problem
	Solution
	Discussion

	2.8 Caching Frequently Requested Data
	Problem
	Solution
	Discussion
	See Also

	2.9 Delaying Type Instantiation
	Problem
	Solution
	Discussion
	See Also

	2.10 Parsing Data Files
	Problem
	Solution
	Discussion

	Chapter 3. Ensuring Quality
	3.1 Writing a Unit Test
	Problem
	Solution
	Discussion
	See Also

	3.2 Versioning Interfaces Safely
	Problem
	Solution
	Discussion

	3.3 Simplifying Parameter Validation
	Problem
	Solution
	Discussion
	See Also

	3.4 Protecting Code from NullReferenceException
	Problem
	Solution
	Discussion
	See Also

	3.5 Avoiding Magic Strings
	Problem
	Solution
	Discussion

	3.6 Customizing Class String Representation
	Problem
	Solution
	Discussion
	See Also

	3.7 Rethrowing Exceptions
	Problem
	Solution
	Discussion
	See Also

	3.8 Managing Process Status
	Problem
	Solution
	Discussion
	See Also

	3.9 Building Resilient Network Connections
	Problem
	Solution
	Discussion

	3.10 Measuring Performance
	Problem
	Solution
	Discussion
	See Also

	Chapter 4. Querying with LINQ
	4.1 Transforming Object Shape
	Problem
	Solution
	Discussion

	4.2 Joining Data
	Problem
	Solution
	Discussion
	See Also

	4.3 Performing Left Joins
	Problem
	Solution
	Discussion

	4.4 Grouping Data
	Problem
	Solution
	Discussion

	4.5 Building Incremental Queries
	Problem
	Solution
	Discussion
	See Also

	4.6 Querying Distinct Objects
	Problem
	Solution
	Discussion
	See Also

	4.7 Simplifying Queries
	Problem
	Solution
	Discussion

	4.8 Operating on Sets
	Problem
	Solution
	Discussion
	See Also

	4.9 Building a Query Filter with Expression Trees
	Problem
	Solution
	Discussion
	See Also

	4.10 Querying in Parallel
	Problem
	Solution
	Discussion
	See Also

	Chapter 5. Implementing Dynamic and Reflection
	5.1 Reading Attributes with Reflection
	Problem
	Solution
	Discussion
	See Also

	5.2 Accessing Type Members with Reflection
	Problem
	Solution
	Discussion
	See Also

	5.3 Instantiating Type Members with Reflection
	Problem
	Solution
	Discussion
	See Also

	5.4 Invoking Methods with Reflection
	Problem
	Solution
	Discussion
	See Also

	5.5 Replacing Reflection with Dynamic Code
	Problem
	Solution
	Discussion
	See Also

	5.6 Performing Interop with Office Apps
	Problem
	Solution
	Discussion
	See Also

	5.7 Creating an Inherently Dynamic Type
	Problem
	Solution
	Discussion
	See Also

	5.8 Adding and Removing Type Members Dynamically
	Problem
	Solution
	Discussion
	See Also

	5.9 Calling Python Code from C#
	Problem
	Solution
	Discussion
	See Also

	5.10 Calling C# Code from Python
	Problem
	Solution
	Discussion
	See Also

	Chapter 6. Programming Asynchronously
	6.1 Creating Async Console Applications
	Problem
	Solution
	Discussion
	See Also

	6.2 Reducing Memory Allocations for Async Return Values
	Problem
	Solution
	Discussion
	See Also

	6.3 Creating Async Iterators
	Problem
	Solution
	Discussion
	See Also

	6.4 Writing Safe Async Libraries
	Problem
	Solution
	Discussion
	See Also

	6.5 Updating Progress Asynchronously
	Problem
	Solution
	Discussion
	See Also

	6.6 Calling Synchronous Code from Async Code
	Problem
	Solution
	Discussion
	See Also

	6.7 Waiting for Parallel Tasks to Complete
	Problem
	Solution
	Discussion
	See Also

	6.8 Handling Parallel Tasks as They Complete
	Problem
	Solution
	Discussion
	See Also

	6.9 Cancelling Async Operations
	Problem
	Solution
	Discussion
	See Also

	6.10 Disposing of Async Resources
	Problem
	Solution
	Discussion
	See Also

	Chapter 7. Manipulating Data
	7.1 Generating Password Hashes
	Problem
	Solution
	Discussion

	7.2 Encrypting and Decrypting Secrets
	Problem
	Solution
	Discussion

	7.3 Hiding Development Secrets
	Problem
	Solution
	Discussion

	7.4 Producing JSON
	Problem
	Solution
	Discussion
	See Also

	7.5 Consuming JSON
	Problem
	Solution
	Discussion
	See Also

	7.6 Working with JSON Data
	Problem
	Solution
	Discussion
	See Also

	7.7 Consuming XML
	Problem
	Solution
	Discussion
	See Also

	7.8 Producing XML
	Problem
	Solution
	Discussion
	See Also

	7.9 Encoding and Decoding URL Parameters
	Problem
	Solution
	Discussion

	7.10 Flexible DateTime Reading
	Problem
	Solution
	Discussion
	See Also

	Chapter 8. Matching with Patterns
	8.1 Converting Instances Safely
	Problem
	Solution
	Discussion

	8.2 Catching Filtered Exceptions
	Problem
	Solution
	Discussion

	8.3 Simplifying Switch Assignments
	Problem
	Solution
	Discussion

	8.4 Switching on Property Values
	Problem
	Solution
	Discussion
	See Also

	8.5 Switching on Tuples
	Problem
	Solution
	Discussion
	See Also

	8.6 Switching on Position
	Problem
	Solution
	Discussion
	See Also

	8.7 Switching on Value Ranges
	Problem
	Solution
	Discussion

	8.8 Switching with Complex Conditions
	Problem
	Solution
	Discussion

	8.9 Using Logical Conditions
	Problem
	Solution
	Discussion
	See Also

	8.10 Switching on Type
	Problem
	Solution
	Discussion

	Chapter 9. Examining Recent C# Language Highlights
	9.1 Simplifying Application Startup
	Problem
	Solution
	Discussion

	9.2 Reducing Instantiation Syntax
	Problem
	Solution
	Discussion
	See Also

	9.3 Initializing Immutable State
	Problem
	Solution
	Discussion
	See Also

	9.4 Creating Immutable Types
	Problem
	Solution
	Discussion
	See Also

	9.5 Simplifying Immutable Type Assignments
	Problem
	Solution
	Discussion
	See Also

	9.6 Designing for Record Reuse
	Problem
	Solution
	Discussion

	9.7 Returning Different Method Override Types
	Problem
	Solution
	Discussion
	See Also

	9.8 Implementing Iterators as Extension Methods
	Problem
	Solution
	Discussion

	9.9 Slicing Arrays
	Problem
	Solution
	Discussion
	See Also

	9.10 Initializing Entire Modules
	Problem
	Solution
	Discussion
	See Also

	Summary
	Index
	About the Author

