
This material is provided for informational purposes only. Microsoft makes no warranties, express or implied.

©2010 Microsoft Corporation.

PATTERNS OF PARALLEL PROGRAMMING

UNDERSTANDING AND APPLYING PARALLEL PATTERNS
WITH THE .NET FRAMEWORK 4 AND VISUAL C#

Stephen Toub

Parallel Computing Platform

Microsoft Corporation

Abstract

This document provides an in-depth tour of support in the Microsoft® .NET Framework 4 for parallel programming.

This includes an examination of common parallel patterns and how they’re implemented without and with this

new support, as well as best practices for developing parallel components utilizing parallel patterns.

Last Updated:

July 1, 2010

Patterns of Parallel Programming Page 2

TABLE OF CONTENTS

Introduction ... 3

Delightfully Parallel Loops ... 4

Fork/Join .. 36

Passing Data ... 49

Producer/Consumer .. 53

Aggregations .. 67

MapReduce .. 75

Dependencies .. 77

Data Sets of Unknown Size .. 88

Speculative Processing .. 94

Laziness .. 97

Shared State .. 105

Conclusion ... 118

Patterns of Parallel Programming Page 3

INTRODUCTION

Patterns are everywhere, yielding software development best practices and helping to seed new generations of

developers with immediate knowledge of established directions on a wide array of problem spaces. Patterns

represent successful (or in the case of anti-patterns, unsuccessful) repeated and common solutions developers

have applied time and again in particular architectural and programming domains. Over time, these tried and true

practices find themselves with names, stature, and variations, helping further to proliferate their application and

to jumpstart many a project.

Patterns don’t just manifest at the macro level. Whereas design patterns typically cover architectural structure or

methodologies, coding patterns and building blocks also emerge, representing typical ways of implementing a

specific mechanism. Such patterns typically become ingrained in our psyche, and we code with them on a daily

basis without even thinking about it. These patterns represent solutions to common tasks we encounter

repeatedly.

Of course, finding good patterns can happen only after many successful and failed attempts at solutions. Thus for

new problem spaces, it can take some time for them to gain a reputation. Such is where our industry lies today

with regards to patterns for parallel programming. While developers in high-performance computing have had to

develop solutions for supercomputers and clusters for decades, the need for such experiences has only recently

found its way to personal computing, as multi-core machines have become the norm for everyday users. As we

move forward with multi-core into the manycore era, ensuring that all software is written with as much parallelism

and scalability in mind is crucial to the future of the computing industry. This makes patterns in the parallel

computing space critical to that same future.

“In general, a ‘multi-core’ chip refers to eight or fewer homogeneous cores in one

microprocessor package, whereas a ‘manycore’ chip has more than eight possibly

heterogeneous cores in one microprocessor package. In a manycore system, all cores

share the resources and services, including memory and disk access, provided by the

operating system.” –The Manycore Shift, (Microsoft Corp., 2007)

In the .NET Framework 4, a slew of new support has been added to handle common needs in parallel

programming, to help developers tackle the difficult problem that is programming for multi-core and manycore.

Parallel programming is difficult for many reasons and is fraught with perils most developers haven’t had to

experience. Issues of races, deadlocks, livelocks, priority inversions, two-step dances, and lock convoys typically

have no place in a sequential world, and avoiding such issues makes quality patterns all the more important. This

new support in the .NET Framework 4 provides support for key parallel patterns along with building blocks to help

enable implementations of new ones that arise.

To that end, this document provides an in-depth tour of support in the .NET Framework 4 for parallel

programming, common parallel patterns and how they’re implemented without and with this new support, and

best practices for developing parallel components in this brave new world.

This document only minimally covers the subject of asynchrony for scalable, I/O-bound applications: instead, it

focuses predominantly on applications of CPU-bound workloads and of workloads with a balance of both CPU and

I/O activity. This document also does not cover Visual F# in Visual Studio 2010, which includes language-based

support for several key parallel patterns.

Patterns of Parallel Programming Page 4

DELIGHTFULLY PARALLEL LOOPS

Arguably the most well-known parallel pattern is that befitting “Embarrassingly Parallel” algorithms. Programs that

fit this pattern are able to run well in parallel because the many individual operations being performed may

operate in relative independence, with few or no dependencies between operations such that they can be carried

out in parallel efficiently. It’s unfortunate that the “embarrassing” moniker has been applied to such programs, as

there’s nothing at all embarrassing about them. In fact, if more algorithms and problem domains mapped to the

embarrassing parallel domain, the software industry would be in a much better state of affairs. For this reason,

many folks have started using alternative names for this pattern, such as “conveniently parallel,” “pleasantly

parallel,” and “delightfully parallel,” in order to exemplify the true nature of these problems. If you find yourself

trying to parallelize a problem that fits this pattern, consider yourself fortunate, and expect that your

parallelization job will be much easier than it otherwise could have been, potentially even a “delightful” activity.

A significant majority of the work in many applications and algorithms is done through loop control constructs.

Loops, after all, often enable the application to execute a set of instructions over and over, applying logic to

discrete entities, whether those entities are integral values, such as in the case of a for loop, or sets of data, such

as in the case of a for each loop. Many languages have built-in control constructs for these kinds of loops,

Microsoft Visual C#® and Microsoft Visual Basic® being among them, the former with for and foreach keywords,

and the latter with For and For Each keywords. For problems that may be considered delightfully parallel, the

entities to be processed by individual iterations of the loops may execute concurrently: thus, we need a

mechanism to enable such parallel processing.

IMPLEMENTING A PARALLEL LOOPING CONSTRUCT

As delightfully parallel loops are such a predominant pattern, it’s really important to understand the ins and outs

of how they work, and all of the tradeoffs implicit to the pattern. To understand these concepts further, we’ll build

a simple parallelized loop using support in the .NET Framework 3.5, prior to the inclusion of the more

comprehensive parallelization support introduced in the .NET Framework 4.

First, we need a signature. To parallelize a for loop, we’ll implement a method that takes three parameters: a

lower-bound, an upper-bound, and a delegate for the loop body that accepts as a parameter an integral value to

represent the current iteration index (that delegate will be invoked once for each iteration). Note that we have

several options for the behavior of these parameters. With C# and Visual Basic, the vast majority of for loops are

written in a manner similar to the following:

C#

for (int i = 0; i < upperBound; i++)
{
 // ... loop body here
}

Visual Basic

For i As Integer = 0 To upperBound
 ' ... loop body here
Next

Contrary to what a cursory read may tell you, these two loops are not identical: the Visual Basic loop will execute

one more iteration than will the C# loop. This is because Visual Basic treats the supplied upper-bound as inclusive,

Patterns of Parallel Programming Page 5

whereas we explicitly specified it in C# to be exclusive through our use of the less-than operator. For our purposes

here, we’ll follow suit to the C# implementation, and we’ll have the upper-bound parameter to our parallelized

loop method represent an exclusive upper-bound:

C#

public static void MyParallelFor(
 int inclusiveLowerBound, int exclusiveUpperBound, Action<int> body);

Our implementation of this method will invoke the body of the loop once per element in the range

[inclusiveLowerBound,exclusiveUpperBound), and will do so with as much parallelization as it can muster. To

accomplish that, we first need to understand how much parallelization is possible.

Wisdom in parallel circles often suggests that a good parallel implementation will use one thread per core. After

all, with one thread per core, we can keep all cores fully utilized. Any more threads, and the operating system will

need to context switch between them, resulting in wasted overhead spent on such activities; any fewer threads,

and there’s no chance we can take advantage of all that the machine has to offer, as at least one core will be

guaranteed to go unutilized. This logic has some validity, at least for certain classes of problems. But the logic is

also predicated on an idealized and theoretical concept of the machine. As an example of where this notion may

break down, to do anything useful threads involved in the parallel processing need to access data, and accessing

data requires trips to caches or main memory or disk or the network or other stores that can cost considerably in

terms of access times; while such activities are in flight, a CPU may be idle. As such, while a good parallel

implementation may assume a default of one-thread-per-core, an open mindedness to other mappings can be

beneficial. For our initial purposes here, however, we’ll stick with the one-thread-per core notion.

With the .NET Framework, retrieving the number of logical processors is achieved

using the System.Environment class, and in particular its ProcessorCount property.

Under the covers, .NET retrieves the corresponding value by delegating to the

GetSystemInfo native function exposed from kernel32.dll.

This value doesn’t necessarily correlate to the number of physical processors or even

to the number of physical cores in the machine. Rather, it takes into account the

number of hardware threads available. As an example, on a machine with two

sockets, each with four cores, each with two hardware threads (sometimes referred

to as hyperthreads), Environment.ProcessorCount would return 16.

Starting with Windows 7 and Windows Server 2008 R2, the Windows operating

system supports greater than 64 logical processors, and by default (largely for legacy

application reasons), access to these cores is exposed to applications through a new

concept known as “processor groups.” The .NET Framework does not provide

managed access to the processor group APIs, and thus Environment.ProcessorCount

will return a value capped at 64 (the maximum size of a processor group), even if the

machine has a larger number of processors. Additionally, in a 32-bit process,

ProcessorCount will be capped further to 32, in order to map well to the 32-bit mask

used to represent processor affinity (a requirement that a particular thread be

scheduled for execution on only a specific subset of processors).

Patterns of Parallel Programming Page 6

Once we know the number of processors we want to target, and hence the number of threads, we can proceed to

create one thread per core. Each of those threads will process a portion of the input range, invoking the supplied

Action<int> delegate for each iteration in that range. Such processing requires another fundamental operation of

parallel programming, that of data partitioning. This topic will be discussed in greater depth later in this document;

suffice it to say, however, that partitioning is a distinguishing concept in parallel implementations, one that

separates it from the larger, containing paradigm of concurrent programming. In concurrent programming, a set of

independent operations may all be carried out at the same time. In parallel programming, an operation must first

be divided up into individual sub-operations so that each sub-operation may be processed concurrently with the

rest; that division and assignment is known as partitioning. For the purposes of this initial implementation, we’ll

use a simple partitioning scheme: statically dividing the input range into one range per thread.

Here is our initial implementation:

C#

public static void MyParallelFor(
 int inclusiveLowerBound, int exclusiveUpperBound, Action<int> body)
{
 // Determine the number of iterations to be processed, the number of
 // cores to use, and the approximate number of iterations to process
 // in each thread.
 int size = exclusiveUpperBound - inclusiveLowerBound;
 int numProcs = Environment.ProcessorCount;
 int range = size / numProcs;

 // Use a thread for each partition. Create them all,
 // start them all, wait on them all.
 var threads = new List<Thread>(numProcs);
 for (int p = 0; p < numProcs; p++)
 {
 int start = p * range + inclusiveLowerBound;
 int end = (p == numProcs - 1) ?
 exclusiveUpperBound : start + range;
 threads.Add(new Thread(() => {
 for (int i = start; i < end; i++) body(i);
 }));
 }
 foreach (var thread in threads) thread.Start();
 foreach (var thread in threads) thread.Join();
}

There are several interesting things to note about this implementation. One is that for each range, a new thread is

utilized. That thread exists purely to process the specified partition, and then it terminates. This has several

positive and negative implications. The primary positive to this approach is that we have dedicated threading

resources for this loop, and it is up to the operating system to provide fair scheduling for these threads across the

system. This positive, however, is typically outweighed by several significant negatives. One such negative is the

cost of a thread. By default in the .NET Framework 4, a thread consumes a megabyte of stack space, whether or

not that space is used for currently executing functions. In addition, spinning up a new thread and tearing one

down are relatively costly actions, especially if compared to the cost of a small loop doing relatively few iterations

and little work per iteration. Every time we invoke our loop implementation, new threads will be spun up and torn

down.

Patterns of Parallel Programming Page 7

There’s another, potentially more damaging impact: oversubscription. As we move forward in the world of multi-

core and into the world of manycore, parallelized components will become more and more common, and it’s quite

likely that such components will themselves be used concurrently. If such components each used a loop like the

above, and in doing so each spun up one thread per core, we’d have two components each fighting for the

machine’s resources, forcing the operating system to spend more time context switching between components.

Context switching is expensive for a variety of reasons, including the need to persist details of a thread’s execution

prior to the operating system context switching out the thread and replacing it with another. Potentially more

importantly, such context switches can have very negative effects on the caching subsystems of the machine.

When threads need data, that data needs to be fetched, often from main memory. On modern architectures, the

cost of accessing data from main memory is relatively high compared to the cost of running a few instructions over

that data. To compensate, hardware designers have introduced layers of caching, which serve to keep small

amounts of frequently-used data in hardware significantly less expensive to access than main memory. As a thread

executes, the caches for the core on which it’s executing tend to fill with data appropriate to that thread’s

execution, improving its performance. When a thread gets context switched out, the caches will shift to containing

data appropriate to that new thread. Filling the caches requires more expensive trips to main memory. As a result,

the more context switches there are between threads, the more expensive trips to main memory will be required,

as the caches thrash on the differing needs of the threads using them. Given these costs, oversubscription can be a

serious cause of performance issues. Luckily, the new concurrency profiler views in Visual Studio 2010 can help to

identify these issues, as shown here:

In this screenshot, each horizontal band represents a thread, with time on the x-axis. Green is execution time, red

is time spent blocked, and yellow is time where the thread could have run but was preempted by another thread.

The more yellow there is, the more oversubscription there is hurting performance.

To compensate for these costs associated with using dedicated threads for each loop, we can resort to pools of

threads. The system can manage the threads in these pools, dispatching the threads to access work items queued

for their processing, and then allowing the threads to return to the pool rather than being torn down. This

addresses many of the negatives outlined previously. As threads aren’t constantly being created and torn down,

the cost of their life cycle is amortized over all the work items they process. Moreover, the manager of the thread

pool can enforce an upper-limit on the number of threads associated with the pool at any one time, placing a limit

on the amount of memory consumed by the threads, as well as on how much oversubscription is allowed.

Ever since the .NET Framework 1.0, the System.Threading.ThreadPool class has provided just such a thread pool,

and while the implementation has changed from release to release (and significantly so for the .NET Framework 4),

the core concept has remained constant: the .NET Framework maintains a pool of threads that service work items

provided to it. The main method for doing this is the static QueueUserWorkItem. We can use that support in a

revised implementation of our parallel for loop:

Patterns of Parallel Programming Page 8

C#

public static void MyParallelFor(
 int inclusiveLowerBound, int exclusiveUpperBound, Action<int> body)
{
 // Determine the number of iterations to be processed, the number of
 // cores to use, and the approximate number of iterations to process in
 // each thread.
 int size = exclusiveUpperBound - inclusiveLowerBound;
 int numProcs = Environment.ProcessorCount;
 int range = size / numProcs;

 // Keep track of the number of threads remaining to complete.
 int remaining = numProcs;
 using (ManualResetEvent mre = new ManualResetEvent(false))
 {
 // Create each of the threads.
 for (int p = 0; p < numProcs; p++)
 {
 int start = p * range + inclusiveLowerBound;
 int end = (p == numProcs - 1) ?
 exclusiveUpperBound : start + range;
 ThreadPool.QueueUserWorkItem(delegate {
 for (int i = start; i < end; i++) body(i);
 if (Interlocked.Decrement(ref remaining) == 0) mre.Set();
 });
 }
 // Wait for all threads to complete.
 mre.WaitOne();
 }
}

This removes the inefficiencies in our application related to excessive thread creation and tear down, and it

minimizes the possibility of oversubscription. However, this inefficiency was just one problem with the

implementation: another potential problem has to do with the static partitioning we employed. For workloads that

entail the same approximate amount of work per iteration, and when running on a relatively “quiet” machine

(meaning a machine doing little else besides the target workload), static partitioning represents an effective and

efficient way to partition our data set. However, if the workload is not equivalent for each iteration, either due to

the nature of the problem or due to certain partitions completing more slowly due to being preempted by other

significant work on the system, we can quickly find ourselves with a load imbalance. The pattern of a load-

imbalance is very visible in the following visualization as rendered by the concurrency profiler in Visual Studio

2010.

Patterns of Parallel Programming Page 9

In this output from the profiler, the x-axis is time and the y-axis is the number of cores utilized at that time in the

application’s executions. Green is utilization by our application, yellow is utilization by another application, red is

utilization by a system process, and grey is idle time. This trace resulted from the unfortunate assignment of

different amounts of work to each of the partitions; thus, some of those partitions completed processing sooner

than the others. Remember back to our assertions earlier about using fewer threads than there are cores to do

work? We’ve now degraded to that situation, in that for a portion of this loop’s execution, we were executing with

fewer cores than were available.

By way of example, let’s consider a parallel loop from 1 to 12 (inclusive on both ends), where each iteration does N

seconds of work with N defined as the loop iteration value (that is, iteration #1 will require 1 second of

computation, iteration #2 will require two seconds, and so forth). All in all, this loop will require ((12*13)/2) == 78

seconds of sequential processing time. In an ideal loop implementation on a dual core system, we could finish this

loop’s processing in 39 seconds. This could be accomplished by having one core process iterations 6, 10, 11, and

12, with the other core processing the rest of the iterations.

1 2 3 4 5 6 7 8 9 10 11 12

However, with the static partitioning scheme we’ve employed up until this point, one core will be assigned the

range [1,6] and the other the range [7,12].

1 2 3 4 5 6 7 8 9 10 11 12

Patterns of Parallel Programming Page 10

As such, the first core will have 21 seconds worth of work, leaving the latter core 57 seconds worth of work. Since

the loop isn’t finished until all iterations have been processed, our loop’s processing time is limited by the

maximum processing time of each of the two partitions, and thus our loop completes in 57 seconds instead of the

aforementioned possible 39 seconds. This represents an approximate 50 percent decrease in potential

performance, due solely to an inefficient partitioning. Now you can see why partitioning has such a fundamental

place in parallel programming.

Different variations on static partitioning are possible. For example, rather than assigning ranges, we could use a

form of round-robin, where each thread has a unique identifier in the range [0,# of threads), and where each

thread processes indices from the loop where the index mod the number of threads matches the thread’s

identifier. For example, with the iteration space [0,12) and with four threads, thread #0 would process iteration

values 0, 3, 6, and 9; thread #1 would process iteration values 1, 4, 7, and 10; and so on. If we were to apply this

kind of round-robin partitioning to the previous example, instead of one thread taking 21 seconds and the other

taking 57 seconds, one thread would require 36 seconds and the other 42 seconds, resulting in a much smaller

discrepancy from the optimal runtime of 38 seconds.

1 2 3 4 5 6 7 8 9 10 11 12

To do the best static partitioning possible, you need to be able to accurately predict ahead of time how long all the

iterations will take. That’s rarely feasible, resulting in a need for a more dynamic partitioning, where the system

can adapt to changing workloads quickly. We can address this by shifting to the other end of the partitioning

tradeoffs spectrum, with as much load-balancing as possible.

Spectrum of Partitioning
Tradeoffs

Fu
lly

 S
ta

ti
c

Fu
lly D

yn
am

ic

More Load-BalancingLess Synchronization

To do that, rather than pushing to each of the threads a given set of indices to process, we can have the threads

compete for iterations. We employ a pool of the remaining iterations to be processed, which initially starts filled

with all iterations. Until all of the iterations have been processed, each thread goes to the iteration pool, removes

an iteration value, processes it, and then repeats. In this manner, we can achieve in a greedy fashion an

approximation for the optimal level of load-balancing possible (the true optimum could only be achieved with a

priori knowledge of exactly how long each iteration would take). If a thread gets stuck processing a particular long

iteration, the other threads will compensate by processing work from the pool in the meantime. Of course, even

with this scheme you can still find yourself with a far from optimal partitioning (which could occur if one thread

happened to get stuck with several pieces of work significantly larger than the rest), but without knowledge of how

much processing time a given piece of work will require, there’s little more that can be done.

Patterns of Parallel Programming Page 11

Here’s an example implementation that takes load-balancing to this extreme. The pool of iteration values is

maintained as a single integer representing the next iteration available, and the threads involved in the processing

“remove items” by atomically incrementing this integer:

C#

public static void MyParallelFor(
 int inclusiveLowerBound, int exclusiveUpperBound, Action<int> body)
{
 // Get the number of processors, initialize the number of remaining
 // threads, and set the starting point for the iteration.
 int numProcs = Environment.ProcessorCount;
 int remainingWorkItems = numProcs;
 int nextIteration = inclusiveLowerBound;

 using (ManualResetEvent mre = new ManualResetEvent(false))
 {
 // Create each of the work items.
 for (int p = 0; p < numProcs; p++)
 {
 ThreadPool.QueueUserWorkItem(delegate
 {
 int index;
 while ((index = Interlocked.Increment(
 ref nextIteration) - 1) < exclusiveUpperBound)
 {
 body(index);
 }
 if (Interlocked.Decrement(ref remainingWorkItems) == 0)
 mre.Set();
 });
 }

 // Wait for all threads to complete.
 mre.WaitOne();
 }
}

This is not a panacea, unfortunately. We’ve gone to the other end of the spectrum, trading quality load-balancing

for additional overheads. In our previous static partitioning implementations, threads were assigned ranges and

were then able to process those ranges completely independently from the other threads. There was no need to

synchronize with other threads in order to determine what to do next, because every thread could determine

independently what work it needed to get done. For workloads that have a lot of work per iteration, the cost of

synchronizing between threads so that each can determine what to do next is negligible. But for workloads that do

very little work per iteration, that synchronization cost can be so expensive (relatively) as to overshadow the actual

work being performed by the loop. This can make it more expensive to execute in parallel than to execute serially.

Consider an analogy: shopping with some friends at a grocery store. You come into

the store with a grocery list, and you rip the list into one piece per friend, such that

every friend is responsible for retrieving the elements on his or her list. If the amount

of time required to retrieve the elements on each list is approximately the same as on

every other list, you’ve done a good job of partitioning the work amongst your team,

and will likely find that your time at the store is significantly less than if you had done

Patterns of Parallel Programming Page 12

all of the shopping yourself. But now suppose that each list is not well balanced, with

all of the items on one friend’s list spread out over the entire store, while all of the

items on another friend’s list are concentrated in the same aisle. You could address

this inequity by assigning out one element at a time. Every time a friend retrieves a

food item, he or she brings it back to you at the front of the store and determines in

conjunction with you which food item to retrieve next. If a particular food item takes

a particularly long time to retrieve, such as ordering a custom cut piece of meat at

the deli counter, the overhead of having to go back and forth between you and the

merchandise may be negligible. For simply retrieving a can from a shelf, however, the

overhead of those trips can be dominant, especially if multiple items to be retrieved

from a shelf were near each other and could have all been retrieved in the same trip

with minimal additional time. You could spend so much time (relatively) parceling out

work to your friends and determining what each should buy next that it would be

faster for you to just grab all of the food items in your list yourself.

Of course, we don’t need to pick one extreme or the other. As with most patterns, there are variations on themes.

For example, in the grocery store analogy, you could have each of your friends grab several items at a time, rather

than grabbing one at a time. This amortizes the overhead across the size of a batch, while still having some amount

of dynamism:

C#

public static void MyParallelFor(
 int inclusiveLowerBound, int exclusiveUpperBound, Action<int> body)
{
 // Get the number of processors, initialize the number of remaining
 // threads, and set the starting point for the iteration.
 int numProcs = Environment.ProcessorCount;
 int remainingWorkItems = numProcs;
 int nextIteration = inclusiveLowerBound;
 const int batchSize = 3;

 using (ManualResetEvent mre = new ManualResetEvent(false)) {
 // Create each of the work items.
 for (int p = 0; p < numProcs; p++) {
 ThreadPool.QueueUserWorkItem(delegate {
 int index;
 while ((index = Interlocked.Add(
 ref nextIteration, batchSize) - batchSize)
 < exclusiveUpperBound)
 {
 // In a real implementation, we’d need to handle
 // overflow on this arithmetic.
 int end = index + batchSize;
 if (end >= exclusiveUpperBound) end = exclusiveUpperBound;
 for (int i = index; i < end; i++) body(i);
 }
 if (Interlocked.Decrement(ref remainingWorkItems) == 0)
 mre.Set();
 });
 }

 // Wait for all threads to complete
 mre.WaitOne();

Patterns of Parallel Programming Page 13

 }
}

No matter what tradeoffs you make between overheads and load-balancing, they are tradeoffs. For a particular

problem, you might be able to code up a custom parallel loop algorithm mapping to this pattern that suits your

particular problem best. That could result in quite a bit of custom code, however. In general, a good solution is one

that provides quality results for most problems, minimizing overheads while providing sufficient load-balancing,

and the .NET Framework 4 includes just such an implementation in the new System.Threading.Tasks.Parallel class.

PARALLEL.FOR

As delightfully parallel problems represent one of the most common patterns in parallel programming, it’s natural

that when support for parallel programming is added to a mainstream library, support for delightfully parallel

loops is included. The .NET Framework 4 provides this in the form of the static Parallel class in the new

System.Threading.Tasks namespace in mscorlib.dll. The Parallel class provides just three methods, albeit each

with several overloads. One of these methods is For, providing multiple signatures, one of which is almost identical

to the signature for MyParallelFor shown previously:

C#

public static ParallelLoopResult For(
 int fromInclusive, int toExclusive, Action<int> body);

As with our previous implementations, the For method accepts three parameters: an inclusive lower-bound, an

exclusive upper-bound, and a delegate to be invoked for each iteration. Unlike our implementations, it also returns

a ParallelLoopResult value type, which contains details on the completed loop; more on that later.

Internally, the For method performs in a manner similar to our previous implementations. By default, it uses work

queued to the .NET Framework ThreadPool to execute the loop, and with as much parallelism as it can muster, it

invokes the provided delegate once for each iteration. However, Parallel.For and its overload set provide a whole

lot more than this:

 Exception handling. If one iteration of the loop throws an exception, all of the threads participating in the

loop attempt to stop processing as soon as possible (by default, iterations currently executing will not be

interrupted, but the loop control logic tries to prevent additional iterations from starting). Once all

processing has ceased, all unhandled exceptions are gathered and thrown in aggregate in an

AggregateException instance. This exception type provides support for multiple “inner exceptions,”

whereas most .NET Framework exception types support only a single inner exception. For more

information about AggregateException, see http://msdn.microsoft.com/magazine/ee321571.aspx.

 Breaking out of a loop early. This is supported in a manner similar to the break keyword in C# and the

Exit For construct in Visual Basic. Support is also provided for understanding whether the current

iteration should abandon its work because of occurrences in other iterations that will cause the loop to

end early. This is the primary reason for the ParallelLoopResult return value, shown in the Parallel.For

signature, which helps a caller to understand if a loop ended prematurely, and if so, why.

 Long ranges. In addition to overloads that support working with Int32-based ranges, overloads are

provided for working with Int64-based ranges.

 Thread-local state. Several overloads provide support for thread-local state. More information on this

support will be provided later in this document in the section on aggregation patterns.

http://msdn.microsoft.com/magazine/ee321571.aspx

Patterns of Parallel Programming Page 14

 Configuration options. Multiple aspects of a loop’s execution may be controlled, including limiting the

number of threads used to process the loop.

 Nested parallelism. If you use a Parallel.For loop within another Parallel.For loop, they coordinate with

each other to share threading resources. Similarly, it’s ok to use two Parallel.For loops concurrently, as

they’ll work together to share threading resources in the underlying pool rather than both assuming they

own all cores on the machine.

 Dynamic thread counts. Parallel.For was designed to accommodate workloads that change in complexity

over time, such that some portions of the workload may be more compute-bound than others. As such, it

may be advantageous to the processing of the loop for the number of threads involved in the processing

to change over time, rather than being statically set, as was done in all of our implementations shown

earlier.

 Efficient load balancing. Parallel.For supports load balancing in a very sophisticated manner, much more

so than the simple mechanisms shown earlier. It takes into account a large variety of potential workloads

and tries to maximize efficiency while minimizing overheads. The partitioning implementation is based on

a chunking mechanism where the chunk size increases over time. This helps to ensure quality load

balancing when there are only a few iterations, while minimizing overhead when there are many. In

addition, it tries to ensure that most of a thread’s iterations are focused in the same region of the

iteration space in order to provide high cache locality.

Parallel.For is applicable to a wide-range of delightfully parallel problems, serving as an implementation of this

quintessential pattern. As an example of its application, the parallel programming samples for the .NET Framework

4 (available at http://code.msdn.microsoft.com/ParExtSamples) include a ray tracer. Here’s a screenshot:

Ray tracing is fundamentally a delightfully parallel problem. Each individual pixel in the image is generated by firing

an imaginary ray of light, examining the color of that ray as it bounces off of and through objects in the scene, and

storing the resulting color. Every pixel is thus independent of every other pixel, allowing them all to be processed

in parallel. Here are the relevant code snippets from that sample:

C#

void RenderSequential(Scene scene, Int32[] rgb)
{
 Camera camera = scene.Camera;
 for (int y = 0; y < screenHeight; y++)
 {
 int stride = y * screenWidth;
 for (int x = 0; x < screenWidth; x++)

http://code.msdn.microsoft.com/ParExtSamples

Patterns of Parallel Programming Page 15

 {
 Color color = TraceRay(
 new Ray(camera.Pos, GetPoint(x, y, camera)), scene, 0);
 rgb[x + stride] = color.ToInt32();
 }
 }
}

void RenderParallel(Scene scene, Int32[] rgb)
{
 Camera camera = scene.Camera;
 Parallel.For(0, screenHeight, y =>
 {
 int stride = y * screenWidth;
 for (int x = 0; x < screenWidth; x++)
 {
 Color color = TraceRay(
 new Ray(camera.Pos, GetPoint(x, y, camera)), scene, 0);
 rgb[x + stride] = color.ToInt32();
 }
 });
}

Notice that there are very few differences between the sequential and parallel implementation, limited only to

changing the C# for and Visual Basic For language constructs into the Parallel.For method call.

PARALLEL.FOREACH

A for loop is a very specialized loop. Its purpose is to iterate through a specific kind of data set, a data set made up

of numbers that represent a range. The more generalized concept is iterating through any data set, and constructs

for such a pattern exist in C# with the foreach keyword and in Visual Basic with the For Each construct.

Consider the following for loop:

C#

for(int i=0; i<10; i++)
{
 // ... Process i.
}

Using the Enumerable class from LINQ, we can generate an IEnumerable<int> that represents the same range, and

iterate through that range using a foreach:

C#

foreach(int i in Enumerable.Range(0, 10))
{
 // ... Process i.
}

We can accomplish much more complicated iteration patterns by changing the data returned in the enumerable.

Of course, as it is a generalized looping construct, we can use a foreach to iterate through any enumerable data

set. This makes it very powerful, and a parallelized implementation is similarly quite powerful in the parallel realm.

As with a parallel for, a parallel for each represents a fundamental pattern in parallel programming.

Patterns of Parallel Programming Page 16

Implementing a parallel for each is similar in concept to implementing a parallel for. You need multiple threads to

process data in parallel, and you need to partition the data, assigning the partitions to the threads doing the

processing. In our dynamically partitioned MyParallelFor implementation, the data set remaining was represented

by a single integer that stored the next iteration. In a for each implementation, we can store it as an

IEnumerator<T> for the data set. This enumerator must be protected by a critical section so that only one thread

at a time may mutate it. Here is an example implementation:

C#

public static void MyParallelForEach<T>(
 IEnumerable<T> source, Action<T> body)
{
 int numProcs = Environment.ProcessorCount;
 int remainingWorkItems = numProcs;

 using (var enumerator = source.GetEnumerator())
 {
 using (ManualResetEvent mre = new ManualResetEvent(false))
 {
 // Create each of the work items.
 for (int p = 0; p < numProcs; p++)
 {
 ThreadPool.QueueUserWorkItem(delegate
 {
 // Iterate until there's no more work.
 while (true)
 {
 // Get the next item under a lock,
 // then process that item.
 T nextItem;
 lock (enumerator)
 {
 if (!enumerator.MoveNext()) break;
 nextItem = enumerator.Current;
 }
 body(nextItem);
 }
 if (Interlocked.Decrement(ref remainingWorkItems) == 0)
 mre.Set();
 });
 }

 // Wait for all threads to complete.
 mre.WaitOne();
 }
 }
}

As with the MyParallelFor implementations shown earlier, there are lots of implicit tradeoffs being made in this

implementation, and as with the MyParallelFor, they all come down to tradeoffs between simplicity, overheads,

and load balancing. Taking locks is expensive, and this implementation is taking and releasing a lock for each

element in the enumerable; while costly, this does enable the utmost in load balancing, as every thread only grabs

one item at a time, allowing other threads to assist should one thread run into an unexpectedly expensive

element. We could tradeoff some cost for some load balancing by retrieving multiple items (rather than just one)

while holding the lock. By acquiring the lock, obtaining multiple items from the enumerator, and then releasing the

Patterns of Parallel Programming Page 17

lock, we amortize the cost of acquisition and release over multiple elements, rather than paying the cost for each

element. This benefit comes at the expense of less load balancing, since once a thread has grabbed several items,

it is responsible for processing all of those items, even if some of them happen to be more expensive than the bulk

of the others.

We can decrease costs in other ways, as well. For example, the implementation shown previously always uses the

enumerator’s MoveNext/Current support, but it might be the case that the source input IEnumerable<T> also

implements the IList<T> interface, in which case the implementation could use less costly partitioning, such as that

employed earlier by MyParallelFor:

C#

public static void MyParallelForEach<T>(IEnumerable<T> source, Action<T> body)
{
 IList<T> sourceList = source as IList<T>;
 if (sourceList != null)
 {
 // This assumes the IList<T> implementation’s indexer is safe
 // for concurrent get access.
 MyParallelFor(0, sourceList.Count, i => body(sourceList[i]));
 }
 else
 {
 // ...
 }
}

As with Parallel.For, the .NET Framework 4’s Parallel class provides support for this pattern, in the form of the

ForEach method. Overloads of ForEach provide support for many of the same things for which overloads of For

provide support, including breaking out of loops early, sophisticated partitioning, and thread count dynamism. The

simplest overload of ForEach provides a signature almost identical to the signature shown above:

C#

public static ParallelLoopResult ForEach<TSource>(
 IEnumerable<TSource> source, Action<TSource> body);

As an example application, consider a Student record that contains a settable GradePointAverage property as well

as a readable collection of Test records, each of which has a grade and a weight. We have a set of such student

records, and we want to iterate through each, calculating each student’s grades based on the associated tests.

Sequentially, the code looks as follows:

C#

foreach (var student in students)
{
 student.GradePointAverage =
 student.Tests.Select(test => test.Grade * test.Weight).Sum();
}

To parallelize this, we take advantage of Parallel.ForEach:

C#

Parallel.ForEach(students, student =>
{

Patterns of Parallel Programming Page 18

 student.GradePointAverage =
 student.Tests.Select(test => test.Grade * test.Weight).Sum();
});

PROCESSING NON-INTEGRAL RANGES

The Parallel class in the .NET Framework 4 provides overloads for working with ranges of Int32 and Int64 values.

However, for loops in languages like C# and Visual Basic can be used to iterate through non-integral ranges.

Consider a type Node<T> that represents a linked list:

C#

class Node<T>
{
 public Node<T> Prev, Next;
 public T Data;
}

Given an instance head of such a Node<T>, we can use a for loop to iterate through the list:

C#

for(Node<T> i = head; i != null; i = i.Next)
{
 // ... Process node i.
}

Parallel.For does not contain overloads for working with Node<T>, and Node<T> does not implement

IEnumerable<T>, preventing its direct usage with Parallel.ForEach. To compensate, we can use C# iterators to

create an Iterate method which will yield an IEnumerable<T> to iterate through the Node<T>:

C#

public static IEnumerable<Node<T>> Iterate(Node<T> head)
{
 for (Node<T> i = head; i != null; i = i.Next)
 {
 yield return i;
 }
}

With such a method in hand, we can now use a combination of Parallel.ForEach and Iterate to approximate a

Parallel.For implementation that does work with Node<T>:

C#

Parallel.ForEach(Iterate(head), i =>
{
 // ... Process node i.
});

This same technique can be applied to a wide variety of scenarios. Keep in mind, however, that the

IEnumerator<T> interface isn’t thread-safe, which means that Parallel.ForEach needs to take locks when accessing

the data source. While ForEach internally uses some smarts to try to amortize the cost of such locks over the

Patterns of Parallel Programming Page 19

processing, this is still overhead that needs to be overcome by more work in the body of the ForEach in order for

good speedups to be achieved.

Parallel.ForEach has optimizations used when working on data sources that can be indexed into, such as lists and

arrays, and in those cases the need for locking is decreased (this is similar to the example implementation shown

previously, where MyParallelForEach was able to use MyParallelFor in processing an IList<T>). Thus, even though

there is both time and memory cost associated with creating an array from an enumerable, performance may

actually be improved in some cases by transforming the iteration space into a list or an array, which can be done

using LINQ. For example:

C#

Parallel.ForEach(Iterate(head).ToArray(), i =>
{
 // ... Process node i.
});

The format of a for construct in C# and a For in Visual Basic may also be generalized into a generic Iterate method:

C#

public static IEnumerable<T> Iterate<T>(
 Func<T> initialization, Func<T, bool> condition, Func<T, T> update)
{
 for (T i = initialization(); condition(i); i = update(i))
 {
 yield return i;
 }
}

While incurring extra overheads for all of the delegate invocations, this now also provides a generalized

mechanism for iterating. The Node<T> example can be re-implemented as follows:

C#

Parallel.ForEach(Iterate(() => head, i => i != null, i => i.Next), i =>
{
 // ... Process node i.
});

BREAKING OUT OF LOOPS EARLY

Exiting out of loops early is a fairly common pattern, one that doesn’t go away when parallelism is introduced. To

help simplify these use cases, the Parallel.For and Parallel.ForEach methods support several mechanisms for

breaking out of loops early, each of which has different behaviors and targets different requirements.

PLANNED EXIT

Patterns of Parallel Programming Page 20

Several overloads of Parallel.For and Parallel.ForEach pass a ParallelLoopState instance to the body delegate.

Included in this type’s surface area are four members relevant to this discussion: methods Stop and Break, and

properties IsStopped and LowestBreakIteration.

When an iteration calls Stop, the loop control logic will attempt to prevent additional iterations of the loop from

starting. Once there are no more iterations executing, the loop method will return successfully (that is, without an

exception). The return type of Parallel.For and Parallel.ForEach is a ParallelLoopResult value type: if Stop caused

the loop to exit early, the result’s IsCompleted property will return false.

C#

ParallelLoopResult loopResult =
Parallel.For(0, N, (int i, ParallelLoopState loop) =>
{
 // ...
 if (someCondition)
 {
 loop.Stop();
 return;
 }
 // ...
});
Console.WriteLine("Ran to completion: " + loopResult.IsCompleted);

For long running iterations, the IsStopped property enables one iteration to detect when another iteration has

called Stop in order to bail earlier than it otherwise would:

C#

ParallelLoopResult loopResult =
Parallel.For(0, N, (int i, ParallelLoopState loop) =>
{
 // ...
 if (someCondition)
 {
 loop.Stop();
 return;
 }
 // ...
 while (true)
 {
 if (loop.IsStopped) return;
 // ...
 }
});

Break is very similar to Stop, except Break provides additional guarantees. Whereas Stop informs the loop control

logic that no more iterations need be run, Break informs the control logic that no iterations after the current one

need be run (for example, where the iteration number is higher or where the data comes after the current

element in the data source), but that iterations prior to the current one still need to be run. It doesn’t guarantee

that iterations after the current one haven’t already run or started running, though it will try to avoid more starting

after the current one. Break may be called from multiple iterations, and the lowest iteration from which Break was

called is the one that takes effect; this iteration number can be retrieved from the ParallelLoopState’s

LowestBreakIteration property, a nullable value. ParallelLoopResult offers a similar LowestBreakIteration

property.

Patterns of Parallel Programming Page 21

This leads to a decision matrix that can be used to interpret a ParallelLoopResult:

 IsCompleted == true

o All iterations were processed.

o If IsCompleted == true, LowestBreakIteration.HasValue will be false.

 IsCompleted == false && LowestBreakIteration.HasValue == false

o Stop was used to exit the loop early

 IsCompleted == false && LowestBreakIteration.HasValue == true

o Break was used to exit the loop early, and LowestBreakIteration.Value contains the lowest

iteration from which Break was called.

Here is an example of using Break with a loop:

C#

var output = new TResult[N];
var loopResult = Parallel.For(0, N, (int i, ParallelLoopState loop) =>
{
 if (someCondition)
 {
 loop.Break();
 return;
 }
 output[i] = Compute(i);
});
long completedUpTo = N;
if (!loopResult.IsCompleted && loopResult.LowestBreakIteration.HasValue)
{
 completedUpTo = loopResult.LowestBreakIteration.Value;
}

Stop is typically useful for unordered search scenarios, where the loop is looking for something and can bail as

soon as it finds it. Break is typically useful for ordered search scenarios, where all of the data up until some point in

the source needs to be processed, with that point based on some search criteria.

UNPLANNED EXIT

The previously mentioned mechanisms for exiting a loop early are based on the body of the loop performing an

action to bail out. Sometimes, however, we want an entity external to the loop to be able to request that the loop

terminate; this is known as cancellation.

Cancellation is supported in parallel loops through the new System.Threading.CancellationToken type introduced

in the .NET Framework 4. Overloads of all of the methods on Parallel accept a ParallelOptions instance, and one of

the properties on ParallelOptions is a CancellationToken. Simply set this CancellationToken property to the

CancellationToken that should be monitored for cancellation, and provide that options instance to the loop’s

invocation. The loop will monitor the token, and if it finds that cancellation has been requested, it will again stop

launching more iterations, wait for all existing iterations to complete, and then throw an

OperationCanceledException.

C#

private CancellationTokenSource _cts = new CancellationTokenSource();

Patterns of Parallel Programming Page 22

// ...
var options = new ParallelOptions { CancellationToken = _cts.Token };
try
{
 Parallel.For(0, N, options, i =>
 {
 // ...
 });
}
catch(OperationCanceledException oce)
{
 // ... Handle loop cancellation.
}

Stop and Break allow a loop itself to proactively exit early and successfully, and cancellation allows an external

entity to the loop to request its early termination. It’s also possible for something in the loop’s body to go wrong,

resulting in an early termination of the loop that was not expected.

In a sequential loop, an unhandled exception thrown out of a loop causes the looping construct to immediately

cease. The parallel loops in the .NET Framework 4 get as close to this behavior as is possible while still being

reliable and predictable. This means that when an exception is thrown out of an iteration, the Parallel methods

attempt to prevent additional iterations from starting, though already started iterations are not forcibly

terminated. Once all iterations have ceased, the loop gathers up any exceptions that have been thrown, wraps

them in a System.AggregateException, and throws that aggregate out of the loop.

As with Stop and Break, for cases where individual operations may run for a long time (and thus may delay the

loop’s exit), it may be advantageous for iterations of a loop to be able to check whether other iterations have

faulted. To accommodate that, ParallelLoopState exposes an IsExceptional property (in addition to the

aforementioned IsStopped and LowestBreakIteration properties), which indicates whether another iteration has

thrown an unhandled exception. Iterations may cooperatively check this property, allowing a long-running

iteration to cooperatively exit early when it detects that another iteration failed.

While this exception logic does support exiting out of a loop early, it is not the recommended mechanism for doing

so. Rather, it exists to assist in exceptional cases, cases where breaking out early wasn’t an intentional part of the

algorithm. As is the case with sequential constructs, exceptions should not be relied upon for control flow.

Note, too, that this exceptions behavior isn’t optional. In the face of unhandled exceptions, there’s no way to tell

the looping construct to allow the entire loop to complete execution, just as there’s no built-in way to do that with

a serial for loop. If you wanted that behavior with a serial for loop, you’d likely end up writing code like the

following:

C#

var exceptions = new Queue<Exception>();
for (int i = 0; i < N; i++)
{
 try
 {
 // ... Loop body goes here.
 }
 catch (Exception exc) { exceptions.Enqueue(exc); }
}
if (exceptions.Count > 0) throw new AggregateException(exceptions);

Patterns of Parallel Programming Page 23

If this is the behavior you desire, that same manual handling is also possible using Parallel.For:

C#

var exceptions = new ConcurrentQueue<Exception>();
Parallel.For(0, N, i =>
{
 try
 {
 // ... Loop body goes here.
 }
 catch (Exception exc) { exceptions.Enqueue(exc); }
});
if (!exceptions.IsEmpty) throw new AggregateException(exceptions);

EMPLOYING MULTIPLE EXIT STRATEGIES

It’s possible that multiple exit strategies could all be employed together, concurrently; we’re dealing with

parallelism, after all. In such cases, exceptions always win: if unhandled exceptions have occurred, the loop will

always propagate those exceptions, regardless of whether Stop or Break was called or whether cancellation was

requested.

If no exceptions occurred but the CancellationToken was signaled and either Stop or Break was used, there’s a

potential race as to whether the loop will notice the cancellation prior to exiting. If it does, the loop will exit with

an OperationCanceledException. If it doesn’t, it will exit due to the Stop/Break as explained previously.

However, Stop and Break may not be used together. If the loop detects that one iteration called Stop while

another called Break, the invocation of whichever method ended up being invoked second will result in an

exception being thrown. This is enforced due to the conflicting guarantees provided by Stop and Break.

For long running iterations, there are multiple properties an iteration might want to check to see whether it should

bail early: IsStopped, LowestBreakIteration, IsExceptional, and so on. To simplify this, ParallelLoopState also

provides a ShouldExitCurrentIteration property, which consolidates all of those checks in an efficient manner. The

loop itself checks this value prior to invoking additional iterations.

PARALLELENUMERABLE.FORALL

Parallel LINQ (PLINQ), exposed from System.Core.dll in the .NET Framework 4, provides a parallelized

implementation of all of the .NET Framework standard query operators. This includes Select (projections), Where

(filters), OrderBy (sorting), and a host of others. PLINQ also provides several additional operators not present in its

serial counterpart. One such operator is AsParallel, which enables parallel processing of a LINQ-to-Objects query.

Another such operator is ForAll.

Partitioning of data has already been discussed to some extent when discussing Parallel.For and Parallel.ForEach,

and merging will be discussed in greater depth later in this document. Suffice it to say, however, that to process an

input data set in parallel, portions of that data set must be distributed to each thread partaking in the processing,

Patterns of Parallel Programming Page 24

and when all of the processing is complete, those partitions typically need to be merged back together to form the

single output stream expected by the caller:

C#

List<InputData> inputData = ...;
foreach (var o in inputData.AsParallel().Select(i => new OutputData(i)))
{
 ProcessOutput(o);
}

Both partitioning and merging incur costs, and in parallel programming, we strive to avoid such costs as they’re

pure overhead when compared to a serial implementation. Partitioning can’t be avoided if data must be processed

in parallel, but in some cases we can avoid merging, such as if the work to be done for each resulting item can be

processed in parallel with the work for every other resulting item. To accomplish this, PLINQ provides the ForAll

operator, which avoids the merge and executes a delegate for each output element:

C#

List<InputData> inputData = ...;
inputData.AsParallel().Select(i => new OutputData(i)).ForAll(o =>
{
 ProcessOutput(o);
});

ANTI-PATTERNS

Superman has his kryptonite. Matter has its anti-matter. And patterns have their anti-patterns. Patterns prescribe

good ways to solve certain problems, but that doesn’t mean they’re not without potential pitfalls. There are

several potential problems to look out for with Parallel.For, Parallel.ForEach, and ParallelEnumerable.ForAll.

SHARED DATA

The new parallelism constructs in the .NET Framework 4 help to alleviate most of the boilerplate code you’d

otherwise have to write to parallelize delightfully parallel problems. As you saw earlier, the amount of code

necessary just to implement a simple and naïve MyParallelFor implementation is vexing, and the amount of code

required to do it well is reams more. These constructs do not, however, automatically ensure that your code is

thread-safe. Iterations within a parallel loop must be independent, and if they’re not independent, you must

ensure that the iterations are safe to execute concurrently with each other by doing the appropriate

synchronization.

ITERATION VARIANTS

In managed applications, one of the most common patterns used with a for/For loop is iterating from 0 inclusive to

some upper bound (typically exclusive in C# and inclusive in Visual Basic). However, there are several variations on

this pattern that, while not nearly as common, are still not rare.

DOWNWARD ITERATION

Patterns of Parallel Programming Page 25

It’s not uncommon to see loops iterating down from an upper-bound exclusive to 0 inclusive:

C#

for(int i=upperBound-1; i>=0; --i) { /*...*/ }

Such a loop is typically (though not always) constructed due to dependencies between the iterations; after all, if all

of the iterations are independent, why write a more complex form of the loop if both the upward and downward

iteration have the same results?

Parallelizing such a loop is often fraught with peril, due to these likely dependencies between iterations. If there

are no dependencies between iterations, the Parallel.For method may be used to iterate from an inclusive lower

bound to an exclusive upper bound, as directionality shouldn’t matter: in the extreme case of parallelism, on a

machine with upperBound number of cores, all iterations of the loop may execute concurrently, and direction is

irrelevant.

When parallelizing downward-iterating loops, proceed with caution. Downward iteration is often a sign of a less

than delightfully parallel problem.

STEPPED ITERATION

Another pattern of a for loop that is less common than the previous cases, but still is not rare, is one involving a

step value other than one. A typical for loop may look like this:

C#

for (int i = 0; i < upperBound; i++) { /*...*/ }

But it’s also possible for the update statement to increase the iteration value by a different amount: for example to

iterate through only the even values between the bounds:

C#

for (int i = 0; i < upperBound; i += 2) { /*...*/ }

Parallel.For does not provide direct support for such patterns. However, Parallel can still be used to implement

such patterns. One mechanism for doing so is through an iterator approach like that shown earlier for iterating

through linked lists:

C#

private static IEnumerable<int> Iterate(
 int fromInclusive, int toExclusive, int step)
{
 for (int i = fromInclusive; i < toExclusive; i += step) yield return i;
}

A Parallel.ForEach loop can now be used to perform the iteration. For example, the previous code snippet for

iterating the even values between 0 and upperBound can be coded as:

C#

Parallel.ForEach(Iterate(0, upperBound, 2), i=> { /*...*/ });

Patterns of Parallel Programming Page 26

As discussed earlier, such an implementation, while straightforward, also incurs the additional costs of forcing the

Parallel.ForEach to takes locks while accessing the iterator. This drives up the per-element overhead of

parallelization, demanding that more work be performed per element to make up for the increased overhead in

order to still achieve parallelization speedups.

Another approach is to do the relevant math manually. Here is an implementation of a ParallelForWithStep loop

that accepts a step parameter and is built on top of Parallel.For:

C#

public static void ParallelForWithStep(
 int fromInclusive, int toExclusive, int step, Action<int> body)
{
 if (step < 1)
 {
 throw new ArgumentOutOfRangeException("step");
 }
 else if (step == 1)
 {
 Parallel.For(fromInclusive, toExclusive, body);
 }
 else // step > 1
 {
 int len = (int)Math.Ceiling((toExclusive - fromInclusive) / (double)step);
 Parallel.For(0, len, i => body(fromInclusive + (i * step)));
 }
}

This approach is less flexible than the iterator approach, but it also involves significantly less overhead. Threads are

not bottlenecked serializing on an enumerator; instead, they need only pay the cost of a small amount of math

plus an extra delegate invocation per iteration.

VERY SMALL LOOP BODIES

As previously mentioned, the Parallel class is implemented in a manner so as to provide for quality load balancing

while incurring as little overhead as possible. There is still overhead, though. The overhead incurred by Parallel.For

is largely centered around two costs:

1) Delegate invocations. If you squint at previous examples of Parallel.For, a call to Parallel.For looks a lot

like a C# for loop or a Visual Basic For loop. Don’t be fooled: it’s still a method call. One consequence of

this is that the “body” of the Parallel.For “loop” is supplied to the method call as a delegate. Invoking a

delegate incurs approximately the same amount of cost as a virtual method call.

2) Synchronization between threads for load balancing. While these costs are minimized as much as

possible, any amount of load balancing will incur some cost, and the more load balancing employed, the

more synchronization is necessary.

For medium to large loop bodies, these costs are largely negligible. But as the size of the loop’s body decreases,

the overheads become more noticeable. And for very small bodies, the loop can be completely dominated by this

overhead’s cost. To support parallelization of very small loop bodies requires addressing both #1 and #2 above.

One pattern for this involves chunking the input into ranges, and then instead of replacing a sequential loop with a

parallel loop, wrapping the sequential loop with a parallel loop.

Patterns of Parallel Programming Page 27

The System.Concurrent.Collections.Partitioner class provides a Create method overload that accepts an integral

range and returns an OrderablePartitioner<Tuple<Int32,Int32>> (a variant for Int64 instead of Int32 is also

available):

C#

public static OrderablePartitioner<Tuple<long, long>> Create(
 long fromInclusive, long toExclusive);

Overloads of Parallel.ForEach accept instances of Partitioner<T> and OrderablePartitioner<T> as sources, allowing

you to pass the result of a call to Partitioner.Create into a call to Parallel.ForEach. For now, think of both

Partitioner<T> and OrderablePartitioner<T> as an IEnumerable<T>.

The Tuple<Int32,Int32> represents a range from an inclusive value to an exclusive value. Consider the following

sequential loop:

C#

for (int i = from; i < to; i++)
{
 // ... Process i.
}

We could use a Parallel.For to parallelize it as follows:

C#

Parallel.For(from, to, i =>
{
 // ... Process i.
});

Or, we could use Parallel.ForEach with a call to Partitioner.Create, wrapping a sequential loop over the range

provided in the Tuple<Int32, Int32>, where the inclusiveLowerBound is represented by the tuple’s Item1 and

where the exclusiveUpperBound is represented by the tuple’s Item2:

C#

Parallel.ForEach(Partitioner.Create(from, to), range =>
{
 for (int i = range.Item1; i < range.Item2; i++)
 {
 // ... process i
 }
});

While more complex, this affords us the ability to process very small loop bodies by eschewing some of the

aforementioned costs. Rather than invoking a delegate for each body invocation, we’re now amortizing the cost of

the delegate invocation across all elements in the chunked range. Additionally, as far as the parallel loop is

concerned, there are only a few elements to be processed: each range, rather than each index. This implicitly

decreases the cost of synchronization because there are fewer elements to load-balance.

While Parallel.For should be considered the best option for parallelizing for loops, if performance measurements

show that speedups are not being achieved or that they’re smaller than expected, you can try an approach like the

one shown using Parallel.ForEach in conjunction with Partitioner.Create.

Patterns of Parallel Programming Page 28

TOO FINE-GRAINED, TOO COARSE GRAINED

The previous anti-pattern outlined the difficulties that arise from having loop bodies that are too small. In addition

to problems that implicitly result in such small bodies, it’s also possible to end up in this situation by decomposing

the problem to the wrong granularity.

Earlier in this section, we demonstrated a simple parallelized ray tracer:

C#

void RenderParallel(Scene scene, Int32[] rgb)
{
 Camera camera = scene.Camera;
 Parallel.For(0, screenHeight, y =>
 {
 int stride = y * screenWidth;
 for (int x = 0; x < screenWidth; x++)
 {
 Color color = TraceRay(
 new Ray(camera.Pos, GetPoint(x, y, camera)), scene, 0);
 rgb[x + stride] = color.ToInt32();
 }
 });
}

Note that there are two loops here, both of which are actually safe to parallelize:

C#

void RenderParallel(Scene scene, Int32[] rgb)
{
 Camera camera = scene.Camera;
 Parallel.For(0, screenHeight, y =>
 {
 int stride = y * screenWidth;
 Parallel.For(0, screenWidth, x =>
 {
 Color color = TraceRay(
 new Ray(camera.Pos, GetPoint(x, y, camera)), scene, 0);
 rgb[x + stride] = color.ToInt32();
 });
 });
}

The question then arises: why and when someone would choose to parallelize one or both of these loops? There

are multiple, competing principles. On the one hand, the idea of writing parallelized software that scales to any

number of cores you throw at it implies that you should decompose as much as possible, so that regardless of the

number of cores available, there will always be enough work to go around. This principle suggests both loops

should be parallelized. On the other hand, we’ve already seen the performance implications that can result if

there’s not enough work inside of a parallel loop to warrant its parallelization, implying that only the outer loop

should be parallelized in order to maintain a meaty body.

Patterns of Parallel Programming Page 29

The answer is that the best balance is found through performance testing. If the overheads of parallelization are

minimal as compared to the work being done, parallelize as much as possible: in this case, that would mean

parallelizing both loops. If the overheads of parallelizing the inner loop would degrade performance on most

systems, think twice before doing so, as it’ll likely be best only to parallelize the outer loop.

There are of course some caveats to this (in parallel programming, there are caveats to everything; there are

caveats to the caveats). Parallelization of only the outer loop demands that the outer loop has enough work to

saturate enough processors. In our ray tracer example, what if the image being ray traced was very wide and short,

such that it had a small height? In such a case, there may only be a few iterations for the outer loop to parallelize,

resulting in too coarse-grained parallelization, in which case parallelizing the inner loop could actually be

beneficial, even if the overheads of parallelizing the inner loop would otherwise not warrant its parallelization.

Another option to consider in such cases is flattening the loops, such that you end up with one loop instead of two.

This eliminates the cost of extra partitions and merges that would be incurred on the inner loop’s parallelization:

C#

void RenderParallel(Scene scene, Int32[] rgb)
{
 int totalPixels = screenHeight * screenWidth;
 Camera camera = scene.Camera;
 Parallel.For(0, totalPixels, i =>
 {
 int y = i / screenWidth, x = i % screenWidth;
 Color color = TraceRay(
 new Ray(camera.Pos, GetPoint(x, y, camera)), scene, 0);
 rgb[i] = color.ToInt32();
 });
}

If in doing such flattening the body of the loop becomes too small (which given the cost of TraceRay in this

example is unlikely), the pattern presented earlier for very small loop bodies may also be employed:

C#

void RenderParallel(Scene scene, Int32[] rgb)
{
 int totalPixels = screenHeight * screenWidth;
 Camera camera = scene.Camera;
 Parallel.ForEach(Partitioner.Create(0, totalPixels), range =>
 {
 for (int i = range.Item1; i < range.Item2; i++)
 {
 int y = i / screenWidth, x = i % screenWidth;
 Color color = TraceRay(
 new Ray(camera.Pos, GetPoint(x, y, camera)), scene, 0);
 rgb[i] = color.ToInt32();
 }
 });
}

NON-THREAD-SAFE ILIST<T> IMPLEMENTATIONS

Patterns of Parallel Programming Page 30

Both PLINQ and Parallel.ForEach query their data sources for several interface implementations. Accessing an

IEnumerable<T> incurs significant cost, due to needing to lock on the enumerator and make virtual methods calls

to MoveNext and Current for each element. In contrast, getting an element from an IList<T> can be done without

locks, as elements of an IList<T> are independent. Thus, both PLINQ and Parallel.ForEach automatically use a

source’s IList<T> implementation if one is available.

In most cases, this is the right decision. However, in very rare cases, an implementation of IList<T> may not be

thread-safe for reading due to the get accessor for the list’s indexer mutating shared state. There are two

predominant reasons why an implementation might do this:

1. The data structures stores data in a non-indexible manner, such that it must traverse the data structure

to find the requested index. In such a case, the data structure may try to amortize the cost of access by

keeping track of the last element accessed, assuming that accesses will occur in a largely sequential

manner, making it cheaper to start a search from the previously accessed element than starting from

scratch. Consider a theoretical linked list implementation as an example. A linked list does not typically

support direct indexing; rather, if you want to access the 42
nd

 element of the list, you need to start at the

beginning, prior to the head, and move to the next element 42 times. As an optimization, the list could

maintain a reference to the most recently accessed element. If you accessed element 42 and then

element 43, upon accessing 42 the list would cache a reference to the 42
nd

 element, thus making access

to 43 a single move next rather than 43 of them from the beginning. If the implementation doesn’t take

thread-safety into account, these mutations are likely not thread-safe.

2. Loading the data structure is expensive. In such cases, the data can be lazy-loaded (loaded on first

access) to defer or avoid some of the initialization costs. If getting data from the list forces initialization,

then mutations could occur due to indexing into the list.

There are only a few, obscure occurrences of this in the .NET Framework. One

example is System.Data.Linq.EntitySet<TEntity>. This type implements

IList<TEntity> with support for lazy loading, such that the first thing its indexer’s get

accessor does is load the data into the EntitySet<TEntity> if loading hasn’t already

occurred.

To work around such cases if you do come across them, you can force both PLINQ and Parallel.ForEach to use the

IEnumerable<T> implementation rather than the IList<T> implementation. This can be achieved in two ways:

1) Use System.Collections.Concurrent.Partitioner’s Create method. There is an overload specific to

IEnumerable<T> that will ensure this interface implementation (not one for IList<T>) is used.

Partitioner.Create returns an instance of a Partitioner<T>, for which there are overloads on

Parallel.ForEach and in PLINQ.

C#

// Will use IList<T> implementation if source implements it.
IEnumerable<T> source = ...;
Parallel.ForEach(source, item => { /*...*/ });

// Will use source’s IEnumerable<T> implementation.
IEnumerable<T> source = ...;
Parallel.ForEach(Partitioner.Create(source), item => { /*...*/ });

Patterns of Parallel Programming Page 31

2) Append onto the data source a call to Enumerable.Select. The Select simply serves to prevent PLINQ and

Parallel.ForEach from finding the original source’s IList<T> implementation.

C#

// Will use IList<T> implementation if source implements it.
IEnumerable<T> source = ...;
Parallel.ForEach(source, item => { /*...*/ });

// Will only provide an IEnumerable<T> implementation.
IEnumerable<T> source = ...;
Parallel.ForEach(source.Select(t => t), item => { /*...*/ });

PARALLEL.FOREACH OVER A PARALLELQUERY<T>

PLINQ’s ParallelEnumerable type operates in terms of ParallelQuery<T> objects. Such objects are returned from

the AsParallel extension method, and all of PLINQ’s operators consume and generate instances of

ParallelQuery<T>. ParallelQuery<T> is itself an IEnumerable<T>, which means it can be iterated over and may be

consumed by anything that understands how to work with an IEnumerable<T>.

Parallel.ForEach is one such construct that works with IEnumerable<T>. As such, it may be tempting to write code

that follows a pattern similar to the following:

C#

var q = from d in data.AsParallel() ... select d;
Parallel.ForEach(q, item => { /* Process item. */ });

While this works correctly, it incurs unnecessary costs. In order for PLINQ to stream its output data into an

IEnumerable<T>, PLINQ must merge the data being generated by all of the threads involved in query processing so

that the multiple sets of data can be consumed by code expecting only one. Conversely, when accepting an input

IEnumerable<T>, Parallel.ForEach must consume the single data stream and partition it into multiple data streams

for processing in parallel. Thus, by passing a ParallelQuery<T> to a Parallel.ForEach, in the .NET Framework 4 the

data from the PLINQ query will be merged and will then be repartitioned by the Parallel.ForEach. This can be

costly.

PLINQ Query

Partition

Partition

Partition

..

IEnumerable<T>

Parallel.ForEach

Partition

Partition

Partition

..

Instead, PLINQ’s ParallelEnumerable.ForAll method should be used. Rewriting the previous code as follows will

avoid the spurious merge and repartition:

Patterns of Parallel Programming Page 32

C#

var q = (from d in data.AsParallel() ... select d);
q.ForAll(item => { /* Process item. */ });

This allows the output of all partitions to be processed in parallel, as discussed in the previous section on

ParallelEnumerable.ForAll.

PLINQ Query

Partition

Partition

Partition

..

Action<TSource>

Action<TSource>

Action<TSource>

Action<TSource>

THREAD AFFINITY IN ACCESSING SOURCE DATA

Both Parallel.ForEach and ParallelEnumerable.ForAll rely on each of the threads participating in the loop to pull

data from the source enumerator. While both ForEach and ForAll ensure that the enumerator is accessed in a

thread-safe manner (only one thread at a time will use MoveNext and Current, and will do so atomically with

respect to other threads in the loop), it’s still the case that multiple threads may use MoveNext over time. In

general, this shouldn’t be a problem. However, in some rare cases the implementation of MoveNext may have

thread affinity, meaning that for correctness purposes it should always be accessed from the same thread, and

perhaps even from a specific thread. An example of this could be if MoveNext were accessing a user interface (UI)

control in Windows Forms or Windows Presentation Foundation in order to retrieve its data, or if the control were

pulling data from the object model of one of the Microsoft Office applications. While such thread affinity is not

recommended, avoiding it may not be possible.

In such cases, the consuming implementation needs to change to ensure that the data source is only accessed by

the thread making the call to the loop. That can be achieved with a producer/consumer pattern (many more

details on that pattern are provided later in this document), using code similar in style to the following:

C#

static void ForEachWithEnumerationOnMainThread<T>(
 IEnumerable<T> source, Action<T> body)
{
 var collectedData = new BlockingCollection<T>();
 var loop = Task.Factory.StartNew(() =>
 Parallel.ForEach(collectedData.GetConsumingEnumerable(), body));
 try
 {
 foreach (var item in source) collectedData.Add(item);
 }
 finally { collectedData.CompleteAdding(); }
 loop.Wait();

Patterns of Parallel Programming Page 33

}

The Parallel.ForEach executes in the background by pulling the data from a shared collection that is populated by

the main thread enumerating the data source and copying its contents into the shared collection. This solves the

issue of thread affinity with the data source by ensuring that the data source is only accessed on the main thread.

If, however, all access to the individual elements must also be done only on the main thread, parallelization is

infeasible.

PARALLEL LOOPS FOR I/O-BOUND WORKLOADS IN SCALABLE APPLICATIONS

It can be extremely tempting to utilize the delightfully parallel looping constructs in the .NET Framework 4 for I/O-

bound workloads. And in many cases, it’s quite reasonable to do so as a quick-and-easy approach to getting up and

running with better performance.

Consider the need to ping a set of machines. We can do this quite easily using the

System.Net.NetworkInformation.Ping class, along with LINQ:

C#

var addrs = new[] { addr1, addr2, ..., addrN };
var pings = from addr in addrs
 select new Ping().Send(addr);
foreach (var ping in pings)
 Console.WriteLine("{0}: {1}", ping.Status, ping.Address);

By adding just a few characters, we can easily parallelize this operation using PLINQ:

C#

var pings = from addr in addrs.AsParallel()
 select new Ping().Send(addr);
foreach (var ping in pings)
 Console.WriteLine("{0}: {1}", ping.Status, ping.Address);

Rather than using a single thread to ping these machines one after the other, this code uses multiple threads to do

so, typically greatly decreasing the time it takes to complete the operation. Of course, in this case, the work I’m

doing is not at all CPU-bound, and yet by default PLINQ uses a number of threads equal to the number of logical

processors, an appropriate heuristic for CPU-bound workloads but not for I/O-bound. As such, we can utilize

PLINQ’s WithDegreeOfParallelism method to get the work done even faster by using more threads (assuming

there are enough addresses being pinged to make good use of all of these threads):

C#

var pings = from addr in addrs.AsParallel().WithDegreeOfParallelism(16)
 select new Ping().Send(addr);
foreach (var ping in pings)
 Console.WriteLine("{0}: {1}", ping.Status, ping.Address);

For a client application on a desktop machine doing just this one operation, using threads in this manner typically

does not lead to any significant problems. However, if this code were running in an ASP.NET application, it could be

Patterns of Parallel Programming Page 34

deadly to the system. Threads have a non-negligible cost, a cost measurable in both the memory required for their

associated data structures and stack space, and in the extra impact it places on the operating system and its

scheduler. When threads are doing real work, this cost is justified. But when threads are simply sitting around

blocked waiting for an I/O operation to complete, they’re dead weight. Especially in Web applications, where

thousands of users may be bombarding the system with requests, that extra and unnecessary weight can bring a

server to a crawl. For applications where scalability in terms of concurrent users is at a premium, it’s imperative

not to write code like that shown above, even though it’s really simple to write. There are other solutions,

however.

WithDegreeOfParallelism changes the number of threads required to execute and

complete the PLINQ query, but it does not force that number of threads into

existence. If the number is larger than the number of threads available in the

ThreadPool, it may take some time for the ThreadPool thread-injection logic to inject

enough threads to complete the processing of the query. To force it to get there

faster, you can employ the ThreadPool.SetMinThreads method.

The System.Threading.Tasks.Task class will be discussed later in this document. In short, however, note that a

Task instance represents an asynchronous operation. Typically these are computationally-intensive operations, but

the Task abstraction can also be used to represent I/O-bound operations and without tying up a thread in the

process. As an example of this, the samples available at http://code.msdn.microsoft.com/ParExtSamples include

extension methods for the Ping class that provide asynchronous versions of the Send method to return a

Task<PingReply>. Using such methods, we can rewrite our previous method as follows:

C#

var pings = (from addr in addrs
 select new Ping().SendTask(addr, null)).ToArray();
Task.WaitAll(pings);
foreach (Task<PingReply> ping in pings)
 Console.WriteLine("{0}: {1}", ping.Result.Status, ping.Result.Address);

This new solution will asynchronously send a ping to all of the addresses, but no threads (other than the main

thread waiting on the results) will be blocked in the process; only when the pings complete will threads be utilized

briefly to process the results, the actual computational work. This results in a much more scalable solution, one

that may be used in applications that demand scalability. Note, too, that taking advantage of

Task.Factory.ContinueWhenAll (to be discussed later), the code can even avoid blocking the main iteration thread,

as illustrated in the following example:

C#

var pings = (from addr in addrs
 select new Ping().SendTask(addr, null)).ToArray();
Task.Factory.ContinueWhenAll(pings, _ =>
{
 Task.WaitAll(pings);
 foreach (var ping in pings)
 Console.WriteLine("{0}: {1}", ping.Result.Status, ping.Result.Address);
});

http://code.msdn.microsoft.com/ParExtSamples

Patterns of Parallel Programming Page 35

The example here was shown utilizing the Ping class, which implements the Event-based Asynchronous Pattern

(EAP). This pattern for asynchronous operation was introduced in the .NET Framework 2.0, and is based on .NET

events that are raised asynchronously when an operation completes.

A more prevalent pattern throughout the .NET Framework is the Asynchronous Programming Model (APM)

pattern, which has existed in the .NET Framework since its inception. Sometimes referred to as the “begin/end”

pattern, this pattern is based on a pair of methods: a “begin” method that starts the asynchronous operation, and

an “end” method that joins with it, retrieving any results of the invocation or the exception from the operation.

To help integrate with this pattern, the aforementioned Task class can also be used to wrap an APM invocation,

which can again help with the scalability, utilizing the Task.Factory.FromAsync method. This support can then be

used to build an approximation of asynchronous methods, as is done in the Task.Factory.Iterate extension method

available in the samples at samples available at http://code.msdn.microsoft.com/ParExtSamples. For more

information, see http://blogs.msdn.com/pfxteam/9809774.aspx. Through its asynchronous workflow functionality,

F# in Visual Studio 2010 also provides first-class language support for writing asynchronous methods. For more

information, see http://msdn.microsoft.com/en-us/library/dd233182(VS.100).aspx. The incubation language

Axum, available for download at http://msdn.microsoft.com/en-us/devlabs/dd795202.aspx, also includes first-

class language support for writing asynchronous methods.

http://code.msdn.microsoft.com/ParExtSamples
http://blogs.msdn.com/pfxteam/9809774.aspx
http://msdn.microsoft.com/en-us/library/dd233182(VS.100).aspx
http://msdn.microsoft.com/en-us/devlabs/dd795202.aspx

Patterns of Parallel Programming Page 36

FORK/JOIN

The patterns employed for delightfully parallel loops are really a subset of a larger set of patterns centered around

“fork/join.” In fork/join patterns, work is “forked” such that several pieces of work are launched asynchronously.

That forked work is later joined with in order to ensure that all of the processing has completed, and potentially to

retrieve the results of that processing if it wasn’t utilized entirely for side-effecting behavior. Loops are a prime

example of this: we fork the processing of loop iterations, and we join such that the parallel loop invocation only

completes when all concurrent processing is done.

The new System.Threading.Tasks namespace in the .NET Framework 4 contains a significant wealth of support for

fork/join patterns. In addition to the Parallel.For, Parallel.ForEach, and PLINQ constructs already discussed, the

.NET Framework provides the Parallel.Invoke method, as well as the new Task and Task<TResult> types. The new

System.Threading.CountdownEvent type also helps with fork/join patterns, in particular for when dealing with

concurrent programming models that don’t provide built-in support for joins.

COUNTING DOWN

A primary component of fork/join pattern implementations is keeping track of how much still remains to be

completed. We saw this in our earlier MyParallelFor and MyParallelForEach implementations, with the loop

storing a count for the number of work items that still remained to be completed, and a ManualResetEvent that

would be signaled when this count reached 0. Support for this pattern is codified into the new

System.Threading.CountdownEvent type in the .NET Framework 4. Below is a code snippet from earlier for

implementing the sample MyParallelFor, now modified to use CountdownEvent.

C#

static void MyParallelFor(
 int fromInclusive, int toExclusive, Action<int> body)
{
 int numProcs = Environment.ProcessorCount;
 int nextIteration = fromInclusive;

 using (CountdownEvent ce = new CountdownEvent(numProcs))
 {
 for (int p = 0; p < numProcs; p++)
 {
 ThreadPool.QueueUserWorkItem(delegate
 {
 int index;
 while ((index = Interlocked.Increment(
 ref nextIteration) - 1) < toExclusive)
 {
 body(index);
 }
 ce.Signal();
 });
 }
 ce.Wait();
 }
}

Patterns of Parallel Programming Page 37

Using CountdownEvent frees us from having to manage a count manually. Instead, the event is initialized with the

expected number of signals, each thread signals the event when the thread completes its processing, and the main

thread waits on the event for all signals to be received.

COUNTING UP AND DOWN

Counting down is often employed in parallel patterns, but so is incorporating some amount of counting up. If the

remaining count represents the number of work items to be completed, and we end up adding more work items

after setting the initial count, the count will need to be increased.

Here is an example of implementing a MyParallelForEach that launches one asynchronous work item per element

to be processed. Since we don’t know ahead of time how many elements there will be, we add a count of 1 for

each element before launching it, and when the work item completes we signal the event.

C#

static void MyParallelForEach<T>(IEnumerable<T> source, Action<T> body)
{
 using (CountdownEvent ce = new CountdownEvent(1))
 {
 foreach (var item in source)
 {
 ce.AddCount(1);
 ThreadPool.QueueUserWorkItem(state =>
 {
 try { body((T)state); }
 finally { ce.Signal(); }
 }, item);
 }
 ce.Signal();
 ce.Wait();
 }
}

Note that the event is initialized with a count of 1. This is a common pattern in these scenarios, as we need to

ensure that the event isn’t set prior to all work items completing. If the count instead started at 0, and the first

work item started and completed prior to our adding count for additional elements, the CountdownEvent would

transition to a set state prematurely. By initializing the count to 1, we ensure that the event has no chance of

reaching 0 until we remove that initial count, which is done in the above example by calling Signal after all

elements have been queued.

PARALLEL.INVOKE

As shown previously, the Parallel class provides support for delightfully parallel loops through the Parallel.For and

Parallel.ForEach methods. Parallel also provides support for patterns based on parallelized regions of code, where

every statement in a region may be executed concurrently. This support, provided through the Parallel.Invoke

method, enables a developer to easily specify multiple statements that should execute in parallel, and as with

Parallel.For and Parallel.ForEach, Parallel.Invoke takes care of issues such as exception handling, synchronous

invocation, scheduling, and the like:

Patterns of Parallel Programming Page 38

C#

Parallel.Invoke(
 () => ComputeMean(),
 () => ComputeMedian(),
 () => ComputeMode());

Invoke itself follows patterns internally meant to help alleviate overhead. As an example, if you specify only a few

delegates to be executed in parallel, Invoke will likely spin up one Task per element. However, if you specify many

delegates, or if you specify ParallelOptions for how those delegates should be invoked, Invoke will likely instead

choose to execute its work in a different manner. Looking at the signature for Invoke, we can see how this might

happen:

C#

static void Invoke(params Action[] actions);

Invoke is supplied with an array of delegates, and it needs to perform an action for each one, potentially in

parallel. That sounds like a pattern to which ForEach can be applied, doesn’t it? In fact, we could implement a

MyParallelInvoke using the MyParallelForEach we previously coded:

C#

static void MyParallelInvoke(params Action[] actions)
{
 MyParallelForEach(actions, action => action());
}

We could even use MyParallelFor:

C#

static void MyParallelInvoke(params Action[] actions)
{
 MyParallelFor(0, actions.Length, i => actions[i]());
}

This is very similar to the type of operation Parallel.Invoke will perform when provided with enough delegates.

The overhead of a parallel loop is more than that of a few tasks, and thus when running only a few delegates, it

makes sense for Invoke to simply use one task per element. But after a certain threshold, it’s more efficient to use

a parallel loop to execute all of the actions, as the cost of the loop is amortized across all of the delegate

invocations.

ONE TASK PER ELEMENT

Parallel.Invoke represents a prototypical example of the fork/join pattern. Multiple operations are launched in

parallel and then joined with such that only when they’re all complete will the entire operation be considered

complete. If we think of each individual delegate invocation from Invoke as being its own asynchronous operation,

we can use a pattern of applying one task per element, where in this case the element is the delegate:

C#

static void MyParallelInvoke(params Action[] actions)
{
 var tasks = new Task[actions.Length];
 for (int i = 0; i < actions.Length; i++)

Patterns of Parallel Programming Page 39

 {
 tasks[i] = Task.Factory.StartNew(actions[i]);
 }
 Task.WaitAll(tasks);
}

This same pattern can be applied for variations, such as wanting to invoke in parallel a set of functions that return

values, with the MyParallelInvoke method returning an array of all of the results. Here are several different ways

that could be implemented, based on the patterns shown thus far (do note these implementations each have

subtle differences in semantics, particularly with regards to what happens when an individual function fails with an

exception):

C#

// Approach #1: One Task per element
static T[]MyParallelInvoke<T>(params Func<T>[] functions)
{
 var tasks = (from function in functions
 select Task.Factory.StartNew(function)).ToArray();
 Task.WaitAll(tasks);
 return tasks.Select(t => t.Result).ToArray();
}

// Approach #2: One Task per element, using parent/child Relationships
static T[] MyParallelInvoke<T>(params Func<T>[] functions)
{
 var results = new T[functions.Length];
 Task.Factory.StartNew(() =>
 {
 for (int i = 0; i < functions.Length; i++)
 {
 int cur = i;
 Task.Factory.StartNew(
 () => results[cur] = functions[cur](),
 TaskCreationOptions.AttachedToParent);
 }
 }).Wait();
 return results;
}

// Approach #3: Using Parallel.For
static T[] MyParallelInvoke<T>(params Func<T>[] functions)
{
 T[] results = new T[functions.Length];
 Parallel.For(0, functions.Length, i =>
 {
 results[i] = functions[i]();
 });
 return results;
}

// Approach #4: Using PLINQ
static T[] MyParallelInvoke<T>(params Func<T>[] functions)
{
 return functions.AsParallel().Select(f => f()).ToArray();
}

Patterns of Parallel Programming Page 40

As with the Action-based MyParallelInvoke, for just a handful of delegates the first approach is likely the most

efficient. Once the number of delegates increases to a plentiful amount, however, the latter approaches of using

Parallel.For or PLINQ are likely more efficient. They also allow you to easily take advantage of additional

functionality built into the Parallel and PLINQ APIs. For example, placing a limit on the degree of parallelism

employed with tasks directly requires a fair amount of additional code. Doing the same with either Parallel or

PLINQ requires only minimal additions. For example, if I want to use at most two threads to run the operations, I

can do the following:

C#

static T[] MyParallelInvoke<T>(params Func<T>[] functions)
{
 T[] results = new T[functions.Length];
 var options = new ParallelOptions { MaxDegreeOfParallelism = 2 };
 Parallel.For(0, functions.Length, options, i =>
 {
 results[i] = functions[i]();
 });
 return results;
}

For fork/join operations, the pattern of creating one task per element may be particularly useful in the following

situations:

1) Additional work may be started only when specific subsets of the original elements have completed

processing. As an example, in the Strassen’s matrix multiplication algorithm, two matrices are multiplied

by splitting each of the matrices into four quadrants. Seven intermediary matrices are generated based on

operations on the eight input submatrices. Four output submatrices that make up the larger output

matrix are computed from the intermediary seven. These four output matrices each only require a subset

of the previous seven, so while it’s correct to wait for all of the seven prior to computing the following

four, some potential for parallelization is lost as a result.

2) All elements should be given the chance to run even if one invocation fails. With solutions based on

Parallel and PLINQ, the looping and query constructs will attempt to stop executing as soon as an

exception is encountered; this can be solved using manual exception handling with the loop, as

demonstrated earlier, however by using Tasks, each operation is treated independently, and such custom

code isn’t needed.

RECURSIVE DECOMPOSITION

One of the more common fork/join patterns deals with forks that themselves fork and join. This recursive nature is

known as recursive decomposition, and it applies to parallelism just as it applies to serial recursive

implementations.

Consider a Tree<T> binary tree data structure:

C#

class Tree<T>
{
 public T Data;
 public Tree<T> Left, Right;
}

Patterns of Parallel Programming Page 41

A tree walk function that executes an action for each node in the tree might look like the following:

C#

static void Walk<T>(Tree<T> root, Action<T> action)
{
 if (root == null) return;
 action(root.Data);
 Walk(root.Left, action);
 Walk(root.Right, action);
}

Parallelizing this may be accomplished by fork/join’ing on at least the two recursive calls, if not also on the action

invocation:

C#

static void Walk<T>(Tree<T> root, Action<T> action)
{
 if (root == null) return;
 Parallel.Invoke(
 () => action(root.Data),
 () => Walk(root.Left, action),
 () => Walk(root.Right, action));
}

The recursive calls to Walk themselves fork/join as well, leading to a logical tree of parallel invocations. This can of

course also be done using Task objects directly:

C#

static void Walk<T>(Tree<T> root, Action<T> action)
{
 if (root == null) return;
 var t1 = Task.Factory.StartNew(() => action(root.Data));
 var t2 = Task.Factory.StartNew(() => Walk(root.Left, action));
 var t3 = Task.Factory.StartNew(() => Walk(root.Right, action));
 Task.WaitAll(t1, t2, t3);
}

We can see all of these Tasks in Visual Studio using the Parallel Tasks debugger window, as shown in the following

screenshot:

Patterns of Parallel Programming Page 42

We can further take advantage of parent/child relationships in order to see the associations between these Tasks

in the debugger. First, we can modify our code by forcing all tasks to be attached to a parent, which will be the

Task currently executing when the child is created. This is done with the TaskCreationOptions.AttachedToParent

option:

C#

static void Walk<T>(Tree<T> root, Action<T> action)
{
 if (root == null) return;
 var t1 = Task.Factory.StartNew(() => action(root.Data),
 TaskCreationOptions.AttachedToParent);
 var t2 = Task.Factory.StartNew(() => Walk(root.Left, action),
 TaskCreationOptions.AttachedToParent);
 var t3 = Task.Factory.StartNew(() => Walk(root.Right, action),
 TaskCreationOptions.AttachedToParent);
 Task.WaitAll(t1, t2, t3);
}

Re-running the application, we can now see the following parent/child hierarchy in the debugger:

CONTINUATION CHAINING

The previous example of walking a tree utilizes blocking semantics, meaning that a particular level won’t complete

until its children have completed. Parallel.Invoke, and the Task Wait functionality on which it’s based, attempt

what’s known as inlining, where rather than simply blocking waiting for another thread to execute a Task, the

waiter may be able to run the waitee on the current thread, thereby improving resource reuse, and improving

performance as a result. Still, there may be some cases where tasks are not inlinable, or where the style of

development is better suited towards a more asynchronous model. In such cases, task completions can be chained.

As an example of this, we’ll revisit the Walk method. Rather than returning void, the Walk method can return a

Task. That Task can represent the completion of all child tasks. There are two primary ways to accomplish this. One

way is to take advantage of Task parent/child relationships briefly mentioned previously. With parent/child

relationships, a parent task won’t be considered completed until all of its children have completed.

Patterns of Parallel Programming Page 43

C#

static Task Walk<T>(Tree<T> root, Action<T> action)
{
 return Task.Factory.StartNew(() =>
 {
 if (root == null) return;
 Walk(root.Left, action);
 Walk(root.Right, action);
 action(root.Data);
 }, TaskCreationOptions.AttachedToParent);
}

Every call to Walk creates a new Task that’s attached to its parent and immediately returns that Task. That Task,

when executed, recursively calls Walk (thus creating Tasks for the children) and executes the relevant action. At

the root level, the initial call to Walk will return a Task that represents the entire tree of processing and that won’t

complete until the entire tree has completed.

Another approach is to take advantage of continuations:

C#

static Task Walk<T>(Tree<T> root, Action<T> action)
{
 if (root == null) return _completedTask;
 Task t1 = Task.Factory.StartNew(() => action(root.Data));
 Task<Task> t2 = Task.Factory.StartNew(() => Walk(root.Left, action));
 Task<Task> t3 = Task.Factory.StartNew(() => Walk(root.Right, action));
 return Task.Factory.ContinueWhenAll(
 new Task[] { t1, t2.Unwrap(), t3.Unwrap() },
 tasks => Task.WaitAll(tasks));
}

As we’ve previously seen, this code uses a task to represent each of the three operations to be performed at each

node: invoking the action for the node, walking the left side of the tree, and walking the right side of the tree.

However, we now have a predicament, in that the Task returned for walking each side of the tree is actually a

Task<Task> rather than simply a Task. This means that the result will be signaled as completed when the Walk call

has returned, but not necessarily when the Task it returned has completed. To handle this, we can take advantage

of the Unwrap method, which converts a Task<Task> into a Task, by “unwrapping” the internal Task into a top-

level Task that represents it (another overload of Unwrap handles unwrapping a Task<Task<TResult>> into a

Task<TResult>). Now with our three tasks, we can employ the ContinueWhenAll method to create and return a

Task that represents the total completion of this node and all of its descendants. In order to ensure exceptions are

propagated correctly, the body of that continuation explicitly waits on all of the tasks; it knows they’re completed

by this point, so this is simply to utilize the exception propagation logic in WaitAll.

The parent-based approach has several advantages, including that the Visual Studio

2010 Parallel Tasks toolwindow can highlight the parent/child relationship involved,

showing the task hierarchy graphically during a debugging session, and exception

handling is simplified, as all exceptions will bubble up to the root parent. However,

the continuation approach may have a memory benefit for deep hierarchies or long-

chains of tasks, since with the parent/child relationships, running children prevent

the parent nodes from being garbage collected.

Patterns of Parallel Programming Page 44

To simplify this, you can consider codifying this into an extension method for easier implementation:

C#

static Task ContinueWhenAll(
 this TaskFactory factory, params Task[] tasks)
{
 return factory.ContinueWhenAll(
 tasks, completed => Task.WaitAll(completed));
}

With that extension method in place, the previous snippet may be rewritten as:

C#

static Task Walk<T>(Tree<T> root, Action<T> action)
{
 if (root == null) return _completedTask;
 var t1 = Task.Factory.StartNew(() => action(root.Data));
 var t2 = Task.Factory.StartNew(() => Walk(root.Left, action));
 var t3 = Task.Factory.StartNew(() => Walk(root.Right, action));
 return Task.Factory.ContinueWhenAll(t1, t2.Unwrap(), t3.Unwrap());
}

One additional thing to notice is the _completedTask returned if the root node is null. Both WaitAll and

ContinueWhenAll will throw an exception if the array of tasks passed to them contains a null element. There are

several ways to work around this, one of which is to ensure that a null element is never provided. To do that, we

can return a valid Task from Walk even if there is no node to be processed. Such a Task should be already

completed so that little additional overhead is incurred. To accomplish this, we can create a single Task using a

TaskCompletionSource<TResult>, resolve the Task into a completed state, and cache it for all code that needs a

completed Task to use:

C#

private static Task _completedTask = ((Func<Task>)(() => {
 var tcs = new TaskCompletionSource<object>();
 tcs.SetResult(null);
 return tcs.Task;
}))();

ANTI-PATTERNS

FALSE SHARING

Data access patterns are important for serial applications, and they’re even more important for parallel

applications. One serious performance issue that can arise in parallel applications occurs where unexpected

sharing happens at the hardware level.

For performance reasons, memory systems use groups called cache lines, typically of 64 bytes or 128 bytes. A

cache line, rather than an individual byte, is moved around the system as a unit, a classic example of chunky

instead of chatty communication. If multiple cores attempt to access two different bytes on the same cache line,

there’s no correctness sharing conflict, but only one will be able to have exclusive access to the cache line at the

Patterns of Parallel Programming Page 45

hardware level, thus introducing the equivalent of a lock at the hardware level that wasn’t otherwise present in

the code. This can lead to unforeseen and serious performance problems.

As an example, consider the following method, which uses a Parallel.Invoke to initialize two arrays to random

values:

C#

void WithFalseSharing()
{
 Random rand1 = new Random(), rand2 = new Random();
 int[] results1 = new int[20000000], results2 = new int[20000000];
 Parallel.Invoke(
 () => {
 for (int i = 0; i < results1.Length; i++)
 results1[i] = rand1.Next();
 },
 () => {
 for (int i = 0; i < results2.Length; i++)
 results2[i] = rand2.Next();
 });
}

The code initializes two distinct System.Random instances and two distinct arrays, such that each thread involved

in the parallelization touches its own non-shared state. However, due to the way these two Random instances

were allocated, they’re likely on the same cache line in memory. Since every call to Next modifies the Random

instance’s internal state, multiple threads will now be contending for the same cache line, leading to seriously

impacted performance. Here’s a version that addresses the issue:

C#

void WithoutFalseSharing()
{
 int[] results1, results2;
 Parallel.Invoke(
 () => {
 Random rand1 = new Random();
 results1 = new int[20000000];
 for (int i = 0; i < results1.Length; i++)
 results1[i] = rand1.Next();
 },
 () => {
 Random rand2 = new Random();
 results2 = new int[20000000];
 for (int i = 0; i < results2.Length; i++)
 results2[i] = rand2.Next();
 });
}

On my dual-core system, when comparing the performance of these two methods, the version with false sharing

typically ends up running slower than the serial equivalent, whereas the version without false sharing typically

ends up running almost twice as fast as the serial equivalent.

False sharing is a likely source for investigation if you find that parallelized code operating with minimal

synchronization isn’t obtaining the parallelized performance improvements you expected. More information is

available in the MSDN Magazine article .NET Matters: False Sharing.

http://msdn.microsoft.com/en-us/magazine/cc872851.aspx

Patterns of Parallel Programming Page 46

RECURSION WITHOUT THRESHOLDS

In a typical introductory algorithms course, computer science students learn about various algorithms for sorting,

often culminating in quicksort. Quicksort is a recursive divide-and-conquer algorithm, where the input array to be

sorted is partitioned into two contiguous chunks, one with values less than a chosen pivot and one with values

greater than or equal to a chosen pivot. Once the array has been partitioned, the quicksort routine may be used

recursively to sort each chunk. The recursion ends when the size of a chunk is one element, since one element is

implicitly sorted.

Students learn that quicksort has an average algorithmic complexity of O(N log N), which for large values of N is

much faster than other algorithms like insertion sort which have a complexity of O(N
2
). They also learn, however,

that big-O notation focuses on the limiting behavior of functions and ignores constants, because as the value of N

grows, the constants aren’t relevant. Yet when N is small, those constants can actually make a difference.

It turns out that constants involved in quicksort are larger than those involved in insertion sort, and as such, for

small values of N, insertion sort is often faster than quicksort. Due to quicksort’s recursive nature, even if the

operation starts out operating on a large N, at some point in the recursion the value of N for that particular call is

small enough that it’s actually better to use insertion sort. Thus, many quality implementations of quicksort won’t

stop the recursion when a chunk size is one, but rather will choose a higher value, and when that threshold is

reached, the algorithm will switch over to a call to insertion sort to sort the chunk, rather than continuing with the

recursive quicksort routine.

As has been shown previously, quicksort is a great example for recursive decomposition with task-based

parallelism, as it’s easy to recursively sort the left and right partitioned chunks in parallel, as shown in the following

example:

C#

static void QuickSort<T>(T[] data, int fromInclusive, int toExclusive)
 where T : IComparable<T>
{
 if (toExclusive - fromInclusive <= THRESHOLD)
 InsertionSort(data, fromInclusive, toExclusive);
 else
 {
 int pivotPos = Partition(data, fromInclusive, toExclusive);
 Parallel.Invoke(
 () => QuickSort(data, fromInclusive, pivotPos),
 () => QuickSort(data, pivotPos, toExclusive));
 }
}

You’ll note, however, that in addition to the costs associated with the quicksort algorithm itself, we now have

additional overheads involved with creating tasks for each half of the sort. If the computation is completely

balanced, at some depth into the recursion we will have saturated all processors. For example, on a dual-core

machine, the first level of recursion will create two tasks, and thus theoretically from that point forward we’re

saturating the machine and there’s no need to continue to bear the overhead of additional tasks. This implies that

we now may benefit from a second threshold: in addition to switching from quicksort to insertion sort at some

threshold, we now also want to switch from parallel to serial at some threshold. That threshold may be defined in

a variety of ways.

Patterns of Parallel Programming Page 47

As with the insertion sort threshold, a simple parallel threshold could be based on the amount of data left to be

processed:

C#

static void QuickSort<T>(T[] data, int fromInclusive, int toExclusive)
 where T : IComparable<T>
{
 if (toExclusive - fromInclusive <= THRESHOLD)
 InsertionSort(data, fromInclusive, toExclusive);
 else
 {
 int pivotPos = Partition(data, fromInclusive, toExclusive);
 if (toExclusive - fromInclusive <= PARALLEL_THRESHOLD)
 {
 // NOTE: PARALLEL_THRESHOLD is chosen to be greater than THRESHOLD.
 QuickSort(data, fromInclusive, pivotPos);
 QuickSort(data, pivotPos, toExclusive);
 }
 else Parallel.Invoke(
 () => QuickSort(data, fromInclusive, pivotPos),
 () => QuickSort(data, pivotPos, toExclusive));
 }
}

Another simple threshold may be based on depth. We can initialize the depth to the max depth we want to recur

to in parallel, and decrement the depth each time we recur… when it reaches 0, we fall back to serial.

C#

static void QuickSort<T>(T[] data, int fromInclusive, int toExclusive, int depth)
 where T : IComparable<T>
{
 if (toExclusive - fromInclusive <= THRESHOLD)
 InsertionSort(data, fromInclusive, toExclusive);
 else
 {
 int pivotPos = Partition(data, fromInclusive, toExclusive);
 if (depth > 0)
 {
 Parallel.Invoke(
 () => QuickSort(data, fromInclusive, pivotPos, depth-1),
 () => QuickSort(data, pivotPos, toExclusive, depth-1));
 }
 else
 {
 QuickSort(data, fromInclusive, pivotPos, 0);
 QuickSort(data, pivotPos, toExclusive, 0);
 }
 }
}

If you assume that the parallelism will be completely balanced due to equal work resulting from all partition

operations, you might then base the initial depth on the number of cores in the machine:

C#

QuickSort(data, 0, data.Length, Math.Log(Environment.ProcessorCount, 2));

Patterns of Parallel Programming Page 48

Alternatively, you might provide a bit of extra breathing room in case the problem space isn’t perfectly balanced:

C#

QuickSort(data, 0, data.Length, Math.Log(Environment.ProcessorCount, 2) + 1);

Of course, the partitioning may result in very unbalanced workloads. And quicksort is just one example of an

algorithm; many other algorithms that are recursive in this manner will frequently result in very unbalanced

workloads.

Another approach is to keep track of the number of outstanding work items, and only “go parallel” when the

number of outstanding items is below a threshold. An example of this follows:

C#

class Utilities
{
 static int CONC_LIMIT = Environment.ProcessorCount * 2;
 volatile int _invokeCalls = 0;

 public void QuickSort<T>(T[] data, int fromInclusive, int toExclusive)
 where T : IComparable<T>
 {
 if (toExclusive - fromInclusive <= THRESHOLD)
 InsertionSort(data, fromInclusive, toExclusive);
 else
 {
 int pivotPos = Partition(data, fromInclusive, toExclusive);
 if (_invokeCalls < CONC_LIMIT)
 {
 Interlocked.Increment(ref _invokeCalls);
 Parallel.Invoke(
 () => QuickSort(data, fromInclusive, pivotPos),
 () => QuickSort(data, pivotPos, toExclusive));
 Interlocked.Decrement(ref _invokeCalls);
 }
 else
 {
 QuickSort(data, fromInclusive, pivotPos);
 QuickSort(data, pivotPos, toExclusive);
 }
 }
 }
}

Here, we’re keeping track of the number of Parallel.Invoke calls active at any one time. When the number is below

a predetermined limit, we recur using Parallel.Invoke; otherwise, we recur serially. This adds the additional

expense of two interlocked operations per recursive call (and is only an approximation, as the _invokeCalls field is

compared to the threshold outside of any synchronization), forcing synchronization where it otherwise wasn’t

needed, but it also allows for more load-balancing. Previously, once a recursive path was serial, it would remain

serial. With this modification, a serial path through QuickSort may recur and result in a parallel path.

Patterns of Parallel Programming Page 49

PASSING DATA

There are several common patterns in the .NET Framework for passing data to asynchronous work.

CLOSURES

Since support for them was added to C# and Visual Basic, closures represent the easiest way to pass data into

background operations. By creating delegates that refer to state outside of their scope, the compiler transforms

the accessed variables in a way that makes them accessible to the delegates, “closing over” those variables. This

makes it easy to pass varying amounts of data into background work:

C#

int data1 = 42;
string data2 = "The Answer to the Ultimate Question of " +
 "Life, the Universe, and Everything";
Task.Factory.StartNew(()=>
{
 Console.WriteLine(data2 + ": " + data1);
});

For applications in need of the utmost in performance and scalability, it’s important to keep in mind that under the

covers the compiler may actually be allocating an object in which to store the variables (in the above example,

data1 and data2) that are accessed by the delegate.

STATE OBJECTS

Dating back to the beginning of the .NET Framework, many APIs that spawn asynchronous work accept a state

parameter and pass that state object into the delegate that represents the body of work. The

ThreadPool.QueueUserWorkItem method is a quintessential example of this:

C#

public static bool QueueUserWorkItem(WaitCallback callBack, object state);
...
public delegate void WaitCallback(object state);

We can take advantage of this state parameter to pass a single object of data into the WaitCallback:

C#

ThreadPool.QueueUserWorkItem(state => {
 Console.WriteLine((string)state);
}, data2);

The Task class in the .NET Framework 4 also supports this pattern:

C#

Task.Factory.StartNew(state => {
 Console.WriteLine((string)state);
}, data2);

Patterns of Parallel Programming Page 50

Note that in contrast to the closures approach, this typically does not cause an extra object allocation to handle

the state, unless the state being supplied is a value type (value types must be boxed to supply them as the object

state parameter).

To pass in multiple pieces of data with this approach, those pieces of data must be wrapped into a single object. In

the past, this was typically a custom class to store specific pieces of information. With the .NET Framework 4, the

new Tuple<> classes may be used instead:

C#

Tuple<int,string> data = Tuple.Create(data1, data2);
Task.Factory.StartNew(state => {
 Tuple<int,string> d = (Tuple<int,string>)state;
 Console.WriteLine(d.Item2 + ": " + d.Item1);
}, data);

As with both closures and working with value types, this requires an object allocation to support the creation of

the tuple to wrap the data items. The built-in tuple types in the .NET Framework 4 also support a limited number

of contained pieces of data.

STATE OBJECTS WITH MEMBER METHODS

Another approach, similar to the former, is to pass data into asynchronous operations by representing the work to

be done asynchronously as an instance method on a class. This allows data to be passed in to that method

implicitly through the “this” reference.

C#

class Work
{
 public int Data1;
 public string Data2;
 public void Run()
 {
 Console.WriteLine(Data1 + ": " + Data2);
 }
}
// ...
Work w = new Work();
w.Data1 = 42;
w.Data2 = "The Answer to the Ultimate Question of " +
 "Life, the Universe, and Everything";
Task.Factory.StartNew(w.Run);

As with the previous approaches, this approach requires an object allocation for an object (in this case, of class

Work) to store the state. Such an allocation is still required if Work is a struct instead of a class; this is because the

creation of a delegate referring to Work must reference the object on which to invoke the instance method Run,

and that reference is stored as an object, thus boxing the struct.

As such, which of these approaches you choose is largely a matter of preference. The closures approach typically

leads to the most readable code, and it allows the compiler to optimize the creation of the state objects. For

example, if the anonymous delegate passed to StartNew doesn’t access any local state, the compiler may be able

to avoid the object allocation to store the state, as it will already be stored as accessible instance or static fields.

Patterns of Parallel Programming Page 51

ANTI-PATTERNS

CLOSING OVER INAPPROPRIATELY SHARED DATA

Consider the following code, and hazard a guess for what it outputs:

C#

static void Main()
{
 for (int i = 0; i < 10; i++)
 {
 ThreadPool.QueueUserWorkItem(delegate { Console.WriteLine(i); });
 }
}

If you guessed that this outputs the numbers 0 through 9 inclusive, you’d likely be wrong. While that might be the

output, more than likely this will actually output ten “10”s. The reason for this has to do with the language’s rules

for scoping and how it captures variables into anonymous methods, which here were used to represent the work

provided to QueueUserWorkItem. The variable i is shared by both the main thread queuing the work items and

the ThreadPool threads printing out the value of i. The main thread is continually updating the value of i as it

iterates from 0 through 9, and thus each output line will contain the value of i at whatever moment the

Console.WriteLine call occurs on the background thread. (Note that unlike the C# compiler, the Visual Basic

compiler kindly warns about this issue: “warning BC42324: Using the iteration variable in a lambda expression may

have unexpected results. Instead, create a local variable within the loop and assign it the value of the iteration

variable.”)

This phenomenon isn’t limited to parallel programming, though the prominence of anonymous methods and

lambda expressions in the the .NET Framework parallel programming model does exacerbate the issue. For a serial

example, consider the following code:

C#

static void Main()
{
 var actions = new List<Action>();
 for (int i = 0; i < 10; i++)
 actions.Add(() => Console.WriteLine(i));
 actions.ForEach(action => action());
}

This code will reliably output ten “10”s, as by the time the Action delegates are invoked, the value of i is already

10, and all of the delegates are referring to the same captured i variable.

To address this issue, we can create a local copy of the iteration variable in scope inside the loop (as was

recommended by the Visual Basic compiler). This will cause each anonymous method to gain its own variable,

rather than sharing them with other delegates. The sequential code shown earlier can be fixed with a small

alteration:

C#

static void Main()
{

Patterns of Parallel Programming Page 52

 var actions = new List<Action>();
 for (int i = 0; i < 10; i++)
 {
 int tmp = i;
 actions.Add(() => Console.WriteLine(tmp));
 }
 actions.ForEach(action => action());
}

This will reliably print out the sequence “0” through “9” as expected. The parallel code can be fixed in a similar

manner:

C#

static void Main()
{
 for (int i = 0; i < 10; i++)
 {
 int tmp = i;
 ThreadPool.QueueUserWorkItem(delegate { Console.WriteLine(tmp); });
 }
}

This will also reliably print out the values “0” through “9”, although the order in which they’re printed is not

guaranteed.

Another similar case where closure semantics can lead you astray is if you’re in the habit of declaring your

variables at the top of your function, and then using them later on. For example:

C#

static void Main(string[] args)
{
 int j;
 Parallel.For(0, 10000, i =>
 {
 int total = 0;
 for (j = 1; j <= 10000; j++) total += j;
 });
}

Due to closure semantics, the j variable will be shared by all iterations of the parallel loop, thus wreaking havoc on

the inner serial loop. To address this, the variable declarations should be moved as close to their usage as possible:

C#

static void Main(string[] args)
{
 Parallel.For(0, 10000, i =>
 {
 int total = 0;
 for (int j = 1; j <= 10000; j++) total += j;
 });
}

Patterns of Parallel Programming Page 53

PRODUCER/CONSUMER

The real world revolves around the “producer/consumer” pattern. Individual entities are responsible for certain

functions, where some entities generate material that ends up being consumed by others. In some cases, those

consumers are also producers for even further consumers. Sometimes there are multiple producers per consumer,

sometimes there are multiple consumers per producer, and sometimes there’s a many-to-many relationship. We

live and breathe producer/consumer, and the pattern similarly has a very high value in parallel computing.

Often, producer/consumer relationships are applied to parallelization when there’s no ability to parallelize an

individual operation, but when multiple operations may be carried out concurrently, with one having a

dependency on the other. For example, consider the need to both compress and encrypt a particular file. This can

be done sequentially, with a single thread reading in a chunk of data, compressing it, encrypting the compressed

data, writing out the encrypted data, and then repeating the process for more chunks until the input file has been

completely processed. Depending on the compression and encryption algorithms utilized, there may not be the

ability to parallelize an individual compression or encryption, and the same data certainly can’t be compressed

concurrently with it being encrypted, as the encryption algorithm must run over the compressed data rather than

over the uncompressed input. Instead, multiple threads may be employed to form a pipeline. One thread can read

in the data. That thread can hand the read data off to another thread that compresses it, and in turn hands the

compressed data off to a third thread. The third thread can then encrypt it, and pass it off to a fourth thread,

which writes the encrypted data to the output file. Each processing “agent”, or “actor”, in this scheme is serial in

nature, churning its input into output, and as long as the hand-offs between agents don’t introduce any reordering

operations, the output data from the entire process will emerge in the same order the associated data was input.

Those hand-offs can be managed with the new BlockingCollection<> type, which provides key support for this

pattern in the .NET Framework 4.

PIPELINES

Hand-offs between threads in a parallelized system require shared state: the producer needs to put the output

data somewhere, and the consumer needs to know where to look to get its input data. More than just having

access to a storage location, however, there is additional communication that’s necessary. A consumer is often

prevented from making forward progress until there’s some data to be consumed. Additionally, in some systems, a

producer needs to be throttled so as to avoid producing data much faster than consumers can consume it. In both

of these cases, a notification mechanism must also be incorporated. Additionally, with multiple producers and

multiple consumers, participants must not trample on each other as they access the storage location.

We can build a simple version of such a hand-off mechanism using a Queue<T> and a SemaphoreSlim:

C#

class BlockingQueue<T>
{
 private Queue<T> _queue = new Queue<T>();
 private SemaphoreSlim _semaphore = new SemaphoreSlim(0, int.MaxValue);

 public void Enqueue(T data)
 {
 if (data == null) throw new ArgumentNullException("data");
 lock (_queue) _queue.Enqueue(data);
 _semaphore.Release();

Patterns of Parallel Programming Page 54

 }

 public T Dequeue()
 {
 _semaphore.Wait();
 lock (_queue) return _queue.Dequeue();
 }
}

Here we have a very simple “blocking queue” data structure. Producers call Enqueue to add data into the queue,

which adds the data to an internal Queue<T> and notifies consumers using a semaphore that another element of

data is available. Similarly, consumers use Dequeue to wait for an element of data to be available and then remove

that data from the underlying Queue<T>. Note that because multiple threads could be accessing the data structure

concurrently, a lock is used to protect the non-thread-safe Queue<T> instance.

Another similar implementation makes use of Monitor’s notification capabilities instead of using a semaphore:

C#

class BlockingQueue<T>
{
 private Queue<T> _queue = new Queue<T>();

 public void Enqueue(T data)
 {
 if (data == null) throw new ArgumentNullException("data");
 lock (_queue)
 {
 _queue.Enqueue(data);
 Monitor.Pulse(_queue);
 }
 }

 public T Dequeue()
 {
 lock (_queue)
 {
 while (_queue.Count == 0) Monitor.Wait(_queue);
 return _queue.Dequeue();
 }
 }
}

Such implementations provide basic support for data hand-offs between threads, but they also lack several

important things. How do producers communicate that there will be no more elements produced? With this

blocking behavior, what if a consumer only wants to block for a limited amount of time before doing something

else? What if producers need to be throttled, such that if the underlying Queue<T> is full they’re blocked from

adding to it? What if you want to pull from one of several blocking queues rather than from a single one? What if

semantics others than first-in-first-out (FIFO) are required of the underlying storage? What if producers and

consumers need to be canceled? And so forth.

All of these questions have answers in the new .NET Framework 4

System.Collections.Concurrent.BlockingCollection<T> type in System.dll. It provides the same basic behavior as

shown in the naïve implementation above, sporting methods to add to and take from the collection. But it also

Patterns of Parallel Programming Page 55

supports throttling both consumers and producers, timeouts on waits, support for arbitrary underlying data

structures, and more. It also provides built-in implementations of typical coding patterns related to

producer/consumer in order to make such patterns simple to utilize.

As an example of a standard producer/consumer pattern, consider the need to read in a file, transform each line

using a regular expression, and write out the transformed line to a new file. We can implement that using a Task to

run each step of the pipeline asynchronously, and BlockingCollection<string> as the hand-off point between each

stage.

C#

static void ProcessFile(string inputPath, string outputPath)
{
 var inputLines = new BlockingCollection<string>();
 var processedLines = new BlockingCollection<string>();

 // Stage #1
 var readLines = Task.Factory.StartNew(() =>
 {
 try
 {
 foreach (var line in File.ReadLines(inputPath)) inputLines.Add(line);
 }
 finally { inputLines.CompleteAdding(); }
 });

 // Stage #2
 var processLines = Task.Factory.StartNew(() =>
 {
 try
 {
 foreach(var line in inputLines.GetConsumingEnumerable()
 .Select(line => Regex.Replace(line, @"\s+", ", ")))
 {
 processedLines.Add(line);
 }
 }
 finally { processedLines.CompleteAdding(); }
 });

 // Stage #3
 var writeLines = Task.Factory.StartNew(() =>
 {
 File.WriteAllLines(outputPath, processedLines.GetConsumingEnumerable());
 });

 Task.WaitAll(readLines, processLines, writeLines);
}

With this basic structure coded up, we have a lot of flexibility and room for modification. For example, what if we

discover from performance testing that we’re reading from the input file much faster than the processing and

outputting can handle it? One option is to limit the speed at which the input file is read, which can be done by

modifying how the inputLines collection is created:

Patterns of Parallel Programming Page 56

C#

var inputLines = new BlockingCollection<string>(boundedCapacity:20);

By adding the boundedCapacity parameter (shown here for clarity using named parameter functionality, which is

now supported by both C# and Visual Basic in Visual Studio 2010), a producer attempting to add to the collection

will block until there are less than 20 elements in the collection, thus slowing down the file reader. Alternatively,

we could further parallelize the solution. For example, let’s assume that through testing you found the real

problem to be that the processLines Task was heavily compute bound. To address that, you could parallelize it

using PLINQ in order to utilize more cores:

C#

foreach(var line in inputLines.GetConsumingEnumerable()
 .AsParallel().AsOrdered()
 .Select(line => Regex.Replace(line, @"\s+", ", ")))

Note that by specifying “.AsOrdered()” after the “.AsParallel()”, we’re ensuring that PLINQ maintains the same

ordering as in the sequential solution.

DECORATOR TO PIPELINE

The decorator pattern is one of the original Gang Of Four design patterns. A decorator is an object that has the

same interface as another object it contains. In object-oriented terms, it is an object that has an "is-a" and a "has-

a" relationship with a specific type. Consider the CryptoStream class in the System.Security.Cryptography

namespace. CryptoStream derives from Stream (it "is-a" Stream), but it also accepts a Stream to its constructor

and stores that Stream internally (it "has-a" stream); that underlying stream is where the encrypted data is stored.

CryptoStream is a decorator.

With decorators, we typically chain them together. For example, as alluded to in the introduction to this section on

producer/consumer, a common need in software is to both compress and encrypt data. The .NET Framework

contains two decorator stream types to make this feasible: the CryptoStream class already mentioned, and the

GZipStream class. We can compress and encrypt an input file into an output file with code like the following:

C#

static void CompressAndEncrypt(string inputFile, string outputFile)
{
 using (var input = File.OpenRead(inputFile))
 using (var output = File.OpenWrite(outputFile))
 using (var rijndael = new RijndaelManaged())
 using (var transform = rijndael.CreateEncryptor())
 using (var encryptor =
 new CryptoStream(output, transform, CryptoStreamMode.Write))
 using (var compressor =
 new GZipStream(encryptor, CompressionMode.Compress, true))
 input.CopyTo(compressor);
}

The input file stream is copied to a GZipStream, which wraps a CryptoStream, which wraps the output stream. The

data flows from one stream to the other, with its data modified along the way.

http://www.dofactory.com/Patterns/Patterns.aspx

Patterns of Parallel Programming Page 57

Both compression and encryption are computationally intense operations, and as such it can be beneficial to

parallelize this operation. However, given the nature of the problem, it’s not just as simple as running both the

compression and encryption in parallel on the input stream, since the encryption operates on the output of the

compression. Instead, we can form a pipeline, with the output of the compression being fed as the input to the

encryption, such that while the encryption is processing data block N, the compression routine can have already

moved on to be processing N+1 or greater. To make this simple, we’ll implement it with another decorator, a

TransferStream. The idea behind this stream is that writes are offloaded to another thread, which sequentially

writes to the underlying stream all of the writes to the transfer stream. That way, when code calls Write on the

transfer stream, it’s not blocked waiting for the whole chain of decorators to complete their processing: Write

returns immediately after queuing the work, and the caller can go on to do additional work. A simple

implementation of TransferStream is shown below (relying on a custom Stream base type, which simply

implements the abstract Stream class with default implementations of all abstract members, in order to keep the

code shown here small), taking advantage of both Task and BlockingCollection:

C#

public sealed class TransferStream : AbstractStreamBase
{
 private Stream _writeableStream;
 private BlockingCollection<byte[]> _chunks;
 private Task _processingTask;

 public TransferStream(Stream writeableStream)
 {
 // ... Would validate arguments here
 _writeableStream = writeableStream;
 _chunks = new BlockingCollection<byte[]>();
 _processingTask = Task.Factory.StartNew(() =>
 {
 foreach (var chunk in _chunks.GetConsumingEnumerable())
 _writeableStream.Write(chunk, 0, chunk.Length);
 }, TaskCreationOptions.LongRunning);
 }

 public override bool CanWrite { get { return true; } }

 public override void Write(byte[] buffer, int offset, int count)
 {
 // ... Would validate arguments here
 var chunk = new byte[count];
 Buffer.BlockCopy(buffer, offset, chunk, 0, count);
 _chunks.Add(chunk);
 }

 public override void Close()
 {
 _chunks.CompleteAdding();
 try { _processingTask.Wait(); }
 finally { base.Close(); }
 }
}

The constructor stores the underlying stream to be written to. It then sets up the necessary components of the

parallel pipeline. First, it creates a BlockingCollection<byte[]> to store all of the data chunks to be written. Then, it

Patterns of Parallel Programming Page 58

launches a long-running Task that continually pulls from the collection and writes each chunk out to the underlying

stream. The Write method copies the provided input data into a new array which it enqueues to the

BlockingCollection; by default, BlockingCollection uses a queue data structure under the covers, maintaining first-

in-first-out (FIFO) semantics, so the data will be written to the underlying stream in the same order it’s added to

the collection, a property important for dealing with streams which have an implicit ordering. Finally, closing the

stream marks the BlockingCollection as complete for adding, which will cause the consuming loop in the Task

launched in the constructor to cease as soon as the collection is empty, and then waits for the Task to complete;

this ensures that all data is written to the underlying stream before the underlying stream is closed, and it

propagates any exceptions that may have occurred during processing.

With our TransferStream in place, we can now use it to parallelize our compression/encryption snippet shown

earlier:

C#

static void CompressAndEncrypt(string inputFile, string outputFile)
{
 using (var input = File.OpenRead(inputFile))
 using (var output = File.OpenWrite(outputFile))
 using (var rijndael = new RijndaelManaged())
 using (var transform = rijndael.CreateEncryptor())
 using (var encryptor =
 new CryptoStream(output, transform, CryptoStreamMode.Write))
 using (var threadTransfer = new TransferStream(encryptor))
 using (var compressor =
 new GZipStream(threadTransfer, CompressionMode.Compress, true))
 input.CopyTo(compressor);
}

With those simple changes, we’ve now modified the operation so that both the compression and the encryption

may run in parallel. Of course, it’s important to note here that there are implicit limits on how much speedup I can

achieve from this kind of parallelization. At best the code is doing only two elements of work concurrently,

overlapping the compression with encryption, and thus even on a machine with more than two cores, the best

speedup I can hope to achieve is 2x. Note, too, that I could use additional transfer streams in order to read

concurrently with compressing and to write concurrently with encrypting, as such:

C#

static void CompressAndEncrypt(string inputFile, string outputFile)
{
 using (var input = File.OpenRead(inputFile))
 using (var output = File.OpenWrite(outputFile))
 using (var t2 = new TransferStream(output))
 using (var rijndael = new RijndaelManaged())
 using (var transform = rijndael.CreateEncryptor())
 using (var encryptor =
 new CryptoStream(t2, transform, CryptoStreamMode.Write))
 using (var t1 = new TransferStream(encryptor))
 using (var compressor =
 new GZipStream(t1, CompressionMode.Compress, true))
 using (var t0 = new TransferStream(compressor))
 input.CopyTo(t0);
}

Benefits of doing this might manifest if I/O is a bottleneck.

Patterns of Parallel Programming Page 59

IPRODUCERCONSUMERCOLLECTION<T>

As mentioned, BlockingCollection<T> defaults to using a queue as its storage mechanism, but arbitrary storage

mechanisms are supported. This is done utilizing a new interface in the .NET Framework 4, passing an instance of

an implementing type to the BlockingCollection’s constructor:

C#

public interface IProducerConsumerCollection<T> :
 IEnumerable<T>, ICollection, IEnumerable
{
 bool TryAdd(T item);
 bool TryTake(out T item);
 T[] ToArray();
 void CopyTo(T[] array, int index);
}

public class BlockingCollection<T> : //...
{
 //...
 public BlockingCollection(
 IProducerConsumerCollection<T> collection);
 public BlockingCollection(
 IProducerConsumerCollection<T> collection, int boundedCapacity);
 //...
}

Aptly named to contain the name of this pattern, IProducerConsumerCollection<T> represents a collection used in

producer/consumer implementations, where data will be added to the collection by producers and taken from it

by consumers. Hence, the primary two methods on the interface are TryAdd and TryTake, both of which must be

implemented in a thread-safe and atomic manner.

The .NET Framework 4 provides three concrete implementations of this interface:

ConcurrentQueue<T>, ConcurrentStack<T>, and ConcurrentBag<T>.

ConcurrentQueue<T> is the implementation of the interface used by default by

BlockingCollection<T>, providing first-in-first-out (FIFO) semantics.

ConcurrentStack<T> provides last-in-first-out (LIFO) behavior, and

ConcurrentBag<T> eschews ordering guarantees in favor of improved performance

in various use cases, in particular those in which the same thread will be acting as

both a producer and a consumer.

In addition to BlockingCollection<T>, other data structures may be built around IProducerConsumerCollection<T>.

For example, an object pool is a simple data structure that’s meant to allow object reuse. We could build a

concurrent object pool by tying it to a particular storage type, or we can implement one in terms of

IProducerConsumerCollection<T>.

C#

public sealed class ObjectPool<T>
{
 private Func<T> _generator;
 private IProducerConsumerCollection<T> _objects;

Patterns of Parallel Programming Page 60

 public ObjectPool(Func<T> generator)
 : this(generator, new ConcurrentQueue<T>()) { }

 public ObjectPool(
 Func<T> generator, IProducerConsumerCollection<T> storage)
 {
 if (generator == null) throw new ArgumentNullException("generator");
 if (storage == null) throw new ArgumentNullException("storage");
 _generator = generator;
 _objects = storage;
 }

 public T Get()
 {
 T item;
 if (!_objects.TryTake(out item)) item = _generator();
 return item;
 }

 public void Put(T item) { _objects.TryAdd(item); }
}

By parameterizing the storage in this manner, we can adapt our ObjectPool<T> based on use cases and the

associated strengths of the collection implementation. For example, for doing a graphics-intensive UI application,

we may want to render to buffers on background threads and then “bitblip” those buffers onto the UI on the UI

thread. Given the likely size of these buffers, rather than continually allocating large objects and forcing the

garbage collector to clean up after me, we can pool them. In this case, a ConcurrentQueue<T> is a likely choice for

the underlying storage. Conversely, if the pool were being used in a concurrent memory allocator to cache objects

of varying sizes, I don’t need the FIFO-ness of ConcurrentQueue<T>, and I would be better off with a data

structure that minimizes synchronization between threads; for this purpose, ConcurrentBag<T> might be ideal.

Under the covers, ConcurrentBag<T> utilizes a list of instances of T per thread. Each

thread that accesses the bag is able to add and remove data in relative isolation from

other threads accessing the bag. Only when a thread tries to take data out and its

local list is empty will it go in search of items from other threads (the implementation

makes the thread-local lists visible to other threads for only this purpose). This might

sound familiar: ConcurrentBag<T> implements a pattern very similar to the work-

stealing algorithm employed by the the .NET Framework 4 ThreadPool.

While accessing the local list is relatively inexpensive, stealing from another thread’s

list is relatively quite expensive. As a result, ConcurrentBag<T> is best for situations

where each thread only needs its own local list the majority of the time. In the object

pool example, to assist with this it could be worthwhile for every thread to initially

populate the pool with some objects, such that when it later gets and puts objects, it

will be dealing predominantly with its own queue.

Patterns of Parallel Programming Page 61

PRODUCER/CONSUMER EVERYWHERE

If you’ve written a Windows-based application, it’s extremely likely you’ve used the producer/consumer pattern,

potentially without even realizing it. Producer/consumer has many prominent implementations.

THREAD POOLS

If you’ve used a thread pool, you’ve used a quintessential implementation of the producer/consumer pattern. A

thread pool is typically engineered around a data structure containing work to be performed. Every thread in the

pool monitors this data structure, waiting for work to arrive. When work does arrive, a thread retrieves the work,

processes it, and goes back to wait for more. In this capacity, the work that’s being produced is consumed by the

threads in the pool and executed. Utilizing the BlockingCollection<T> type we’ve already seen, it’s straightforward

to build a simple, no-frills thread pool:

C#

public static class SimpleThreadPool
{
 private static BlockingCollection<Action> _work =
 new BlockingCollection<Action>();

 static SimpleThreadPool()
 {
 for (int i = 0; i < Environment.ProcessorCount; i++)
 {
 new Thread(() =>
 {
 foreach (var action in _work.GetConsumingEnumerable())
 {
 action();
 }
 }) { IsBackground = true }.Start();
 }
 }

 public static void QueueWorkItem(Action workItem) { _work.Add(workItem); }
}

In concept, this is very similar to how the ThreadPool type in the .NET Framework 3.5 and earlier operated. In the

.NET Framework 4, the data structure used to store the work to be executed is more distributed. Rather than

maintaining a single global queue, as is done in the above example, the ThreadPool in .NET Framework 4 maintains

not only a global queue but also a queue per thread. Work generated outside of the pool goes into the global

queue as it always did, but threads in the pool can put their generated work into the thread-local queues rather

than into the global queues. When threads go in search of work to be executed, they first examine their local

queue, and only if they don’t find anything there, they then check the global queue. If the global queue is found to

be empty, the threads are then also able to check the queues of their peers, “stealing” work from other threads in

order to stay busy. This work-stealing approach can provide significant benefits in the form of both minimized

contention and synchronization between threads (in an ideal workload, threads can spend most of their time

working on their own local queues) as well as cache utilization. (You can approximate this behavior with the

SimpleThreadPool by instantiating the BlockingCollection<Action> with an underlying ConcurrentBag<Action>

rather than utilizing the default ConcurrentQueue<Action>.)

Patterns of Parallel Programming Page 62

In the previous paragraph, we said that “threads in the pool can put their generated

work into the thread-local queues,” not that they necessarily do. In fact, the

ThreadPool.QueueUserWorkItem method is unable to take advantage of this work-

stealing support. The functionality is only available through Tasks, for which it is

turned on by default. This behavior can be disabled on a per-Task basis using

TaskCreationOptions.PreferFairness.

By default, Tasks execute in the ThreadPool using these internal work-stealing queues. This functionality isn’t

hardwired into Tasks, however. Rather, the functionality is abstracted through the TaskScheduler type. Tasks

execute on TaskSchedulers, and the .NET Framework 4 comes with a built-in TaskScheduler that targets this

functionality in the ThreadPool; this implementation is what’s returned from the TaskScheduler.Default property,

and as this property’s name implies, this is the default scheduler used by Tasks. As with anything where someone

talks about a “default,” there’s usually a mechanism to override the default, and that does in fact exist for Task

execution. It’s possible to write custom TaskScheduler implementations to execute Tasks in whatever manner is

needed by the application.

TaskScheduler itself embodies the concept of producer/consumer. As an abstract class, it provides several abstract

methods that must be overridden and a few virtual methods that may be. The primary abstract method is called

QueueTask, and is used by the rest of the .NET Framework infrastructure, acting as the producer, to queue tasks

into the scheduler. The scheduler implementation then acts as the consumer, executing those tasks in whatever

manner it sees fit. We can build a very simple, no frills TaskScheduler, based on the previously shown

SimpleThreadPool, simply by delegating from QueueTask to QueueWorkItem, using a delegate that executes the

task:

C#

public sealed class SimpleThreadPoolTaskScheduler : TaskScheduler
{
 protected override void QueueTask(Task task)
 {
 SimpleThreadPool.QueueWorkItem(() => base.TryExecuteTask(task));
 }

 protected override bool TryExecuteTaskInline(
 Task task, bool taskWasPreviouslyQueued)
 {
 return base.TryExecuteTask(task);
 }

 protected override IEnumerable<Task> GetScheduledTasks()
 {
 throw new NotSupportedException();
 }
}

We can then produce tasks to be run on an instance of this scheduler:

C#

var myScheduler = new SimpleThreadPoolTaskScheduler();
var t = new Task(() => Console.WriteLine("hello, world"));
t.Start(myScheduler);

Patterns of Parallel Programming Page 63

The TaskFactory class, a default instance of which is returned from the static Task.Factory property, may also be

instantiated with a TaskScheduler instance. This then allows us to easily utilize all of the factory methods while

targeting a custom scheduler:

C#

var factory = new TaskFactory(new SimpleThreadPoolTaskScheduler());
factory.StartNew(() => Console.WriteLine("hello, world"));

UI MARSHALING

If you’ve written a responsive Windows-based application, you’ve already taken advantage of the

producer/consumer pattern. With both Windows Forms and Windows Presentation Foundation (WPF), UI controls

must only be accessed from the same thread that created them, a form of thread affinity. This is problematic for

several reasons, one of the most evident having to do with UI responsiveness. To write a response application, it’s

typically necessary to offload work from the UI thread to a background thread, in order to allow that UI thread to

continue processing Windows messages that cause the UI to repaint, to respond to mouse input, and so on. That

processing occurs with code referred to as a Windows message loop. While the work is executing in the

background, it may need to update visual progress indication in the UI, and when it completes, it may need to

refresh the UI in some manner. Those interactions often require the manipulation of controls that were created on

the UI thread, and as a result, the background thread must marshal calls to those controls to the UI thread.

Both Windows Forms and WPF provide mechanisms for doing this. Windows Forms provides the instance Invoke

method on the Control class. This method accepts a delegate, and marshals the execution of that delegate to the

right thread for that Control, as demonstrated in the following Windows-based application that updates a label on

the UI thread every second:

C#

using System;
using System.Drawing;
using System.Threading;
using System.Windows.Forms;

static class Program
{
 [STAThread]
 static void Main(string[] args)
 {
 var form = new Form();
 var lbl = new Label()
 {
 Dock = DockStyle.Fill,
 TextAlign = ContentAlignment.MiddleCenter
 };
 form.Controls.Add(lbl);
 var handle = form.Handle;

 ThreadPool.QueueUserWorkItem(_ =>
 {
 while (true)
 {
 lbl.Invoke((Action)delegate
 {

Patterns of Parallel Programming Page 64

 lbl.Text = DateTime.Now.ToString();
 });
 Thread.Sleep(1000);
 }
 });

 form.ShowDialog();
 }
}

The Invoke call is synchronous, in that it won’t return until the delegate has completed execution. There is also a

BeginInvoke method, which runs the delegate asynchronously.

This mechanism is itself a producer/consumer implementation. Windows Forms maintains a queue of delegates to

be processed by the UI thread. When Invoke or BeginInvoke is called, it puts the delegate into this queue, and

sends a Windows message to the UI thread. The UI thread’s message loop eventually processes this message,

which tells it to dequeue a delegate from the queue and execute it. In this manner, the thread calling Invoke or

BeginInvoke is the producer, the UI thread is the consumer, and the data being produced and consumed is the

delegate.

The particular pattern of producer/consumer employed by Invoke has a special

name, “rendezvous,” which is typically used to signify multiple threads that meet to

exchange data bidirectionally. The caller of Invoke is providing a delegate and is

potentially getting back the result of that delegate’s invocation. The UI thread is

receiving a delegate and is potentially handing over the delegate’s result. Neither

thread may progress past the rendezvous point until the data has been fully

exchanged.

This producer/consumer mechanism is available for WPF as well, through the Dispatcher class, which similarly

provides Invoke and BeginInvoke methods. To abstract away this functionality and to make it easier to write

components that need to marshal to the UI and that must be usable in multiple UI environments, the .NET

Framework provides the SynchronizationContext class. SynchronizationContext provides Send and Post methods,

which map to Invoke and BeginInvoke, respectively. Windows Forms provides an internal

SynchronizationContext-derived type called WindowsFormsSynchronizationContext, which overrides Send to call

Control.Invoke and which overrides Post to call Control.BeginInvoke. WPF provides a similar type. With this in

hand, a library can be written in terms of SynchronizationContext, and can then be supplied with the right

SynchronziationContext at runtime to ensure it’s able to marshal appropriately to the UI in the current

environment.

SynchronizationContext may also be used for other purposes, and in fact there are

other implementations of it provided in the .NET Framework for non-UI related

purposes. For this discussion, however, we’ll continue to refer to

SynchronizationContext pertaining only to UI marshaling.

To facilitate this, the static SynchronizationContext.Current property exists to help code grab a reference to a

SynchronizationContext that may be used to marshal to the current thread. Both Windows Forms and WPF set

this property on the UI thread to the relevant SynchronizationContext instance. Code may then get the value of

Patterns of Parallel Programming Page 65

this property and use it to marshal work back to the UI. As an example, I can rewrite the previous example by using

SynchronizationContext.Send rather than explicitly using Control.Invoke:

C#

[STAThread]
static void Main(string[] args)
{
 var form = new Form();
 var lbl = new Label()
 {
 Dock = DockStyle.Fill,
 TextAlign = ContentAlignment.MiddleCenter
 };
 form.Controls.Add(lbl);
 var handle = form.Handle;
 var sc = SynchronizationContext.Current;

 ThreadPool.QueueUserWorkItem(_ =>
 {
 while (true)
 {
 sc.Send(delegate
 {
 lbl.Text = DateTime.Now.ToString();
 }, null);
 Thread.Sleep(1000);
 }
 });

 form.ShowDialog();
}

As mentioned in the previous section, custom TaskScheduler types may be implemented to supply custom

consumer implementations for Tasks being produced. In addition to the default implementation of TaskScheduler

that targets the .NET Framework ThreadPool’s internal work-stealing queues, the .NET Framework 4 also includes

the TaskScheduler.FromCurrentSynchronizationContext method, which generates a TaskScheduler that targets

the current synchronization context. We can then take advantage of that functionality to further abstract the

previous example:

C#

[STAThread]
static void Main(string[] args)
{
 var form = new Form();
 var lbl = new Label()
 {
 Dock = DockStyle.Fill,
 TextAlign = ContentAlignment.MiddleCenter
 };
 form.Controls.Add(lbl);
 var handle = form.Handle;
 var ui = new TaskFactory(
 TaskScheduler.FromCurrentSynchronizationContext());

 ThreadPool.QueueUserWorkItem(_ =>

Patterns of Parallel Programming Page 66

 {
 while (true)
 {
 ui.StartNew(() => lbl.Text = DateTime.Now.ToString());
 Thread.Sleep(1000);
 }
 });

 form.ShowDialog();
}

This ability to execute Tasks in various contexts also integrates very nicely with continuations and dataflow, for

example:

C#

Task.Factory.StartNew(() =>
{
 // Run in the background a long computation which generates a result
 return DoLongComputation();
}).ContinueWith(t =>
{
 // Render the result on the UI
 RenderResult(t.Result);
}, TaskScheduler.FromCurrentSynchronizationContext());

SYSTEM EVENTS

The Microsoft.Win32.SystemEvents class exposes a plethora of static events for being notified about happenings

in the system, for example:

C#

public static event EventHandler DisplaySettingsChanged;
public static event EventHandler DisplaySettingsChanging;
public static event EventHandler EventsThreadShutdown;
public static event EventHandler InstalledFontsChanged;
public static event EventHandler PaletteChanged;
public static event PowerModeChangedEventHandler PowerModeChanged;
public static event SessionEndedEventHandler SessionEnded;
public static event SessionEndingEventHandler SessionEnding;
public static event SessionSwitchEventHandler SessionSwitch;
public static event EventHandler TimeChanged;
public static event TimerElapsedEventHandler TimerElapsed;
public static event UserPreferenceChangedEventHandler UserPreferenceChanged;
public static event UserPreferenceChangingEventHandler UserPreferenceChanging;

The Windows operating system notifies applications of the conditions that lead to most of these events through

Windows messages, as discussed in the previous section. To receive these messages, the application must make

sure it has a window to which the relevant messages can be broadcast, and a message loop running to process

them. Thus, if you subscribe to one of these events, even in an application without UI, SystemEvents ensures that

a broadcast window has been created and that a thread has been created to run a message loop for it. That thread

then waits for messages to arrive and consumes them by translating them into the proper .NET Framework objects

and invoking the relevant event. When you register an event handler with an event on SystemEvents, in a strong

sense you’re then implementing the consumer side of this multithreaded, producer/consumer implementation.

Patterns of Parallel Programming Page 67

AGGREGATIONS

Combining data in one way or another is very common in applications, and aggregation is an extremely common

need in parallel applications. In parallel systems, work is divided up, processed in parallel, and the results of these

intermediate computations are then combined in some manner to achieve a final output.

In some cases, no special work is required for the last step. For example, if a parallel for loop iterates from 0 to N,

and the ith result is stored into the resulting array’s ith slot, the aggregation of results into the output array can be

done in parallel with no additional work: the locations in the output array may all be written to independently, and

no two parallel iterations will attempt to store into the same index.

In many cases, however, special work is required to ensure that the results are aggregated safely. There are several

common patterns for achieving such aggregations.

OUTPUTTING A SET OF RESULTS

A common coding pattern in sequential code is of the following form, where some input data is processed, and the

results are stored into an output collection:

C#

var output = new List<TOutput>();
foreach (var item in input)
{
 var result = Compute(item);
 output.Add(result);
}

If the size of the input collection is known in advance, this can be converted into an instance of the

aforementioned example, where the results are stored directly into the corresponding slots in the output:

C#

var output = new TOutput[input.Count];
for (int i = 0; i < input.Count; i++)
{
 var result = Compute(input[i]);
 output[i] = result;
}

This then makes parallelization straightforward, at least as it pertains to aggregation of the results:

C#

var output = new TOutput[input.Count];
Parallel.For(0, input.Count, i =>
{
 var result = Compute(input[i]);
 output[i] = result;
});

However, this kind of transformation is not always possible. In cases where the input size is not known or where

the input collection may not be indexed into, an output collection is needed that may be modified from multiple

Patterns of Parallel Programming Page 68

threads. This may be done using explicit synchronization to ensure the output collection is only modified by a

single thread at a time:

C#

var output = new List<TOutput>();
Parallel.ForEach(input, item =>
{
 var result = Compute(item);
 lock (output) output.Add(result);
});

If the amount of computation done per item is significant, the cost of this locking is likely to be negligible.

However, as the amount of computation per item decreases, the overhead of taking and releasing a lock becomes

more relevant, and contention on the lock increases as more threads are blocked waiting to acquire it

concurrently. To decrease these overheads and to minimize contention, the new thread-safe collections in the

.NET Framework 4 may be used. These collections reside in the System.Collections.Concurrent namespace, and

are engineered to be scalable, minimizing the impact of contention. Some of these collections are implemented

with lock-free techniques, while others are implemented using fine-grained locking.

Amongst these new collections, there’s no direct corollary to the List<T> type. However, there are several

collections that address many of the most common usage patterns for List<T>. If you reexamine the previous code

snippet, you’ll notice that the output ordering from the serial code is not necessarily maintained in the parallel

version. This is because the order in which the data is stored into the output list is no longer based solely on the

order of the data in the input, but also on the order in which the parallel loop chooses to process the elements,

how partitioning occurs, and how long each element takes to process. Once we’ve accepted this issue and have

coded the rest of the application to not rely on the output ordering, our choices expand for what collection to use

to replace the list. Here I’ll use the new ConcurrentBag<T> type:

C#

var output = new ConcurrentBag<TOutput>();
Parallel.ForEach(input, item =>
{
 var result = Compute(item);
 output.Add(result);
});

All of the synchronization necessary to ensure the consistency of the output data structure is handled internally by

the ConcurrentBag.

OUTPUTTING A SINGLE RESULT

Many algorithms output a single result, rather than a single collection. For example, consider the following serial

routine to estimate the value of Pi:

C#

const int NUM_STEPS = 100000000;

static double SerialPi()
{
 double sum = 0.0;
 double step = 1.0 / (double)NUM_STEPS;

Patterns of Parallel Programming Page 69

 for (int i = 0; i < NUM_STEPS; i++)
 {
 double x = (i + 0.5) * step;
 double partial = 4.0 / (1.0 + x * x);
 sum += partial;
 }
 return step * sum;
}

The output of this operation is a single double value. This value is the sum of millions of independent operations,

and thus should be parallelizable. Here is a naïve parallelization:

C#

static double NaiveParallelPi()
{
 double sum = 0.0;
 double step = 1.0 / (double)NUM_STEPS;
 object obj = new object();
 Parallel.For(0, NUM_STEPS, i =>
 {
 double x = (i + 0.5) * step;
 double partial = 4.0 / (1.0 + x * x);
 lock (obj) sum += partial;
 });
 return step * sum;
}

We say “naïve” here, because while this solution is correct, it will also be extremely slow. Every iteration of the

parallel loop does only a few real cycles worth of work, made up of a few additions, multiplications, and divisions,

and then takes a lock to accumulate that iteration’s result into the overall result. The cost of that lock will

dominate all of the other work happening in the parallel loop, largely serializing it, such that parallel version will

likely run significantly slower than the sequential.

To fix this, we need to minimize the amount of synchronization necessary. That can be achieved by maintaining

local sums. We know that certain iterations will never be in conflict with each other, namely those running on the

same underlying thread (since a thread can only do one thing at a time), and thus we can maintain a local sum per

thread or task being used under the covers in Parallel.For. Given the prevalence of this pattern, Parallel.For

actually bakes in support for it. In addition to passing to Parallel.For a delegate for the body, you can also pass in a

delegate that represents an initialization routine to be run on each task used by the loop, and a delegate that

represents a finalization routine that will be run at the end of the task when no more iterations will be executed in

it.

C#

public static ParallelLoopResult For<TLocal>(
 int fromInclusive, int toExclusive,
 Func<TLocal> localInit,
 Func<int, ParallelLoopState, TLocal, TLocal> body,
 Action<TLocal> localFinally);

The result of the initialization routine is passed to the first iteration run by that task, the output of that iteration is

passed to the next iteration, the output of that iteration is passed to the next, and so on, until finally the last

iteration passes its result to the localFinally delegate.

Patterns of Parallel Programming Page 70

Parallel.For

Task 1

localInit

Iteration A

Iteration B

Iteration N

...

localFinally

Task N

localInit

Iteration A

Iteration B

Iteration N

...

localFinally

...

In this manner, a partial result can be built up on each task, and only combined with the partials from other tasks

at the end. Our Pi example can thusly be implemented as follows:

C#

static double ParallelPi()
{
 double sum = 0.0;
 double step = 1.0 / (double)NUM_STEPS;
 object obj = new object();
 Parallel.For(0, NUM_STEPS,
 () => 0.0,
 (i, state, partial) =>
 {
 double x = (i + 0.5) * step;
 return partial + 4.0 / (1.0 + x * x);
 },
 partial => { lock (obj) sum += partial; });
 return step * sum;
}

The localInit delegate returns an initialized value of 0.0. The body delegate calculates its iteration’s result, adds it

to the partial result it was passed in (which either directly from the result of localInit or from the previous iteration

on the same task), and returns the updated partial. The localFinally delegate takes the completed partial, and only

then synchronizes with other threads to combine the partial sum into the total sum.

Earlier in this document we saw the performance ramifications of having a very small delegate body. This Pi

calculation is an example of that case, and thus we can likely achieve better performance using the batching

pattern described previously.

C#

static double ParallelPartitionerPi()
{
 double sum = 0.0;

Patterns of Parallel Programming Page 71

 double step = 1.0 / (double)NUM_STEPS;
 object obj = new object();
 Parallel.ForEach(Partitioner.Create(0, NUM_STEPS),
 () => 0.0,
 (range, state, partial) =>
 {
 for (int i = range.Item1; i < range.Item2; i++)
 {
 double x = (i + 0.5) * step;
 partial += 4.0 / (1.0 + x * x);
 }
 return partial;
 },
 partial => { lock (obj) sum += partial; });
 return step * sum;
}

PLINQ AGGREGATIONS

Any time you find yourself needing to aggregate, think PLINQ. For many problems, aggregation is one of several

areas in which PLINQ excels, with a plethora of aggregation support built-in.

TOARRAY / TOLIST / TODICTIONARY / TOLOOKUP

As does LINQ to Objects, PLINQ provides four “To*” methods that may be used to aggregate all of the output from

a query into a single data structure. PLINQ internally handles all of the relevant synchronization. For example, here

is the previous example of storing all results into a List<T>:

C#

var output = new List<TOutput>();
foreach (var item in input)
{
 var result = Compute(item);
 output.Add(result);
}

This may be converted to a LINQ implementation as follows:

C#

var output = input
 .Select(item => Compute(item))
 .ToList();

And then it can be parallelized with PLINQ:

C#

var output = input.AsParallel()
 .Select(item => Compute(item))
 .ToList();

In fact, not only does PLINQ handle all of the synchronization necessary to do this aggregation safely, it can also be

used to automatically regain the ordering we lost in our parallelized version when using Parallel.ForEach:

Patterns of Parallel Programming Page 72

C#

var output = input.AsParallel().AsOrdered()
 .Select(item => Compute(item))
 .ToList();

SINGLE-VALUE AGGREGATIONS

Just as LINQ and PLINQ are useful for aggregating sets of output, they are also quite useful for aggregating down to

a single value, with operators including but not limited to Average, Sum, Min, Max, and Aggregate. As an example,

the same Pi calculation can be done using LINQ:

C#

static double SerialLinqPi()
{
 double step = 1.0 / (double)NUM_STEPS;
 return Enumerable.Range(0, NUM_STEPS).Select(i =>
 {
 double x = (i + 0.5) * step;
 return 4.0 / (1.0 + x * x);
 }).Sum() * step;
}

With a minimal modification, PLINQ can be used to parallelize this:

C#

static double ParallelLinqPi()
{
 double step = 1.0 / (double)NUM_STEPS;
 return ParallelEnumerable.Range(0, NUM_STEPS).Select(i =>
 {
 double x = (i + 0.5) * step;
 return 4.0 / (1.0 + x * x);
 }).Sum() * step;
}

This parallel implementation does scale nicely as compared to the serial LINQ version. However, if you test the

serial LINQ version and compare its performance against the previously shown serial for loop version, you’ll find

that the serial LINQ version is significantly more expensive; this is largely due to all of the extra delegate

invocations involved in its execution. We can create a hybrid solution that utilizes PLINQ to creation partitions and

sum partial results but creates the individual partial results on each partition using a for loop:

C#

static double ParallelPartitionLinqPi()
{
 double step = 1.0 / (double)NUM_STEPS;
 return Partitioner.Create(0, NUM_STEPS).AsParallel().Select(range =>
 {
 double partial = 0.0;
 for (int i = range.Item1; i < range.Item2; i++)
 {
 double x = (i + 0.5) * step;
 partial += 4.0 / (1.0 + x * x);

Patterns of Parallel Programming Page 73

 }
 return partial;
 }).Sum() * step;
}

AGGREGATE

Both LINQ and PLINQ may be used for arbitrary aggregations using the Aggregate method. Aggregate has several

overloads, including several unique to PLINQ that provide more support for parallelization. PLINQ assumes that the

aggregation delegates are both associative and commutative; this limits the kinds of operations that may be

performed, but also allows PLINQ to optimize its operation in ways that wouldn’t otherwise be possible if it

couldn’t make these assumptions.

The most advanced PLINQ overload of Aggregate is very similar in nature and purpose to the Parallel.ForEach

overload that supports localInit and localFinally delegates:

C#

public static TResult Aggregate<TSource, TAccumulate, TResult>(
 this ParallelQuery<TSource> source,
 Func<TAccumulate> seedFactory,
 Func<TAccumulate, TSource, TAccumulate> updateAccumulatorFunc,
 Func<TAccumulate, TAccumulate, TAccumulate> combineAccumulatorsFunc,
 Func<TAccumulate, TResult> resultSelector);

The seedFactory delegate is the logical equivalent of localInit, executed once per partition to provide a seed for

the aggregation accumulator on that partition. The updateAccumulatorFunc is akin to the body delegate, provided

with the current value of the accumulator and the current element, and returning the updated accumulator value

based on incorporating the current element. The combineAccumulatorsFunc is logically equivalent to the

localFinally delegate, combining the results from multiple partitions (unlike localFinally, which is given the current

task’s final value and may do with it what it chooses, this delegate accepts two accumulator values and returns the

aggregation of the two). And finally, the resultSelector takes the total accumulation and processes it into a result

value. In many scenarios, TAccumulate will be TResult, and this resultSelector will simply return its input.

As a concrete case for where this aggregation operator is useful, consider a common pattern: the need to take the

best N elements output from a query. An example of this might be in a spell checker. Given an input word list,

compare the input text against each word in the dictionary and compute a distance metric between the two. We

then want to select out the best results to be displayed to the user as options. One approach to implementing this

with PLINQ would be as follows:

C#

var bestResults = dictionaryWordList
 .Select(word => new { Word = word, Distance = GetDistance(word, text) })
 .TakeTop(p => -p.Distance, NUM_RESULTS_TO_RETURN)
 .Select(p => p.Word)
 .ToList();

In the previous example, TakeTop is implemented as:

C#

public static IEnumerable<TSource> TakeTop<TSource, TKey>(
 this ParallelQuery<TSource> source,

Patterns of Parallel Programming Page 74

 Func<TSource, TKey> keySelector,
 int count)
{
 return source.OrderBy(keySelector).Take(count);
}

The concept of “take the top N” here is implemented by first sorting all of the result using OrderBy and then taking

the first N results. This may be overly expensive, however. For a large word list of several hundred thousand

words, we’re forced to sort the entire result set, and sorting has relatively high computational complexity. If we’re

only selecting out a handful of results, we can do better. For example, in a sequential implementation we could

simply walk the result set, keeping track of the top N along the way. We can implement this in parallel by walking

each partition in a similar manner, keeping track of the best N from each partition. An example implementation of

this approach is included in the Parallel Extensions samples at http://code.msdn.microsoft.com/ParExtSamples,

and the relevant portion is shown here:

C#

public static IEnumerable<TSource> TakeTop<TSource, TKey>(
 this ParallelQuery<TSource> source,
 Func<TSource, TKey> keySelector,
 int count)
{
 return source.Aggregate(
 // seedFactory
 () => new SortedTopN<TKey,TSource>(count),

 // updateAccumulatorFunc
 (accum, item) =>
 {
 accum.Add(keySelector(item), item);
 return accum;
 },

 // combineAccumulatorsFunc
 (accum1, accum2) =>
 {
 foreach (var item in accum2) accum1.Add(item);
 return accum1;
 },

 // resultSelector
 (accum) => accum.Values);
}

The seedFactory delegate, called once for each partition, generates a new data structure to keep track of the top

count items added to it. Up until count items, all items added to the collection get stored. Beyond that, every time

a new item is added, it’s compared against the least item currently stored, and if it’s greater than it, the least item

is bumped out and the new item is stored in its place. The updateAccumulatorFunc simply adds the current item

to the data structure accumulator (according to the rules of only maintaining the top N). The

combineAccumulatorsFunc combines two of these data structures by adding all of the elements from one to the

other and then returning that end result. And the resultSelector simply returns the set of values from the ultimate

resulting accumulator.

http://code.msdn.microsoft.com/ParExtSamples

Patterns of Parallel Programming Page 75

MAPREDUCE

The “MapReduce” pattern was introduced to handle large-scale computations across a cluster of servers, often

involving massive amounts of data. The pattern is relevant even for a single multi-core machine, however. Here is a

description of the pattern’s core algorithm:

“The computation takes a set of input key/value pairs, and produces a set of output key/value pairs. The

user of the MapReduce library expresses the computation as two functions: Map and Reduce.

Map, written by the user, takes an input pair and produces a set of intermediate key/value pairs. The

MapReduce library groups together all intermediate values associated with the same intermediate key I

and passes them to the Reduce function.

The Reduce function, also written by the user, accepts an intermediate key I and a set of values for that

key. It merges together these values to form a possibly smaller set of values. Typically just zero or one

output value is produced per Reduce invocation. The intermediate values are supplied to the user's

Reduce function via an iterator.”

Dean, J. and Ghemawat, S. 2008. MapReduce: simplified data processing on large clusters. Commun. ACM

51, 1 (Jan. 2008), 107-113. DOI= http://doi.acm.org/10.1145/1327452.1327492

IMPLEMENTING MAPREDUCE WITH PLINQ

The core MapReduce pattern (and many variations on it) is easily implemented with LINQ, and thus with PLINQ. To

see how, we’ll break apart the description of the problem as shown previously.

The description of the Map function is that it takes a single input value and returns a set of mapped values: this is

the purpose of LINQ’s SelectMany operator, which is defined as follows:

C#

public static IEnumerable<TResult> SelectMany<TSource, TResult>(
 this IEnumerable<TSource> source,
 Func<TSource, IEnumerable<TResult>> selector);

Moving on, the MapReduce problem description highlights that results are then grouped according to an

intermediate key. That grouping operation is the purpose of the LINQ GroupBy operator:

C#

public static IEnumerable<IGrouping<TKey, TSource>> GroupBy<TSource, TKey>(
 this IEnumerable<TSource> source,
 Func<TSource, TKey> keySelector);

Finally, a reduction is performed by a function that takes each intermediate key and a set of values for that key,

and produces any number of outputs per key. Again, that’s the purpose of SelectMany.

We can put all of this together to implement MapReduce in LINQ:

C#

public static IEnumerable<TResult> MapReduce<TSource, TMapped, TKey, TResult>(
 this IEnumerable<TSource> source,

Patterns of Parallel Programming Page 76

 Func<TSource, IEnumerable<TMapped>> map,
 Func<TMapped, TKey> keySelector,
 Func<IGrouping<TKey, TMapped>, IEnumerable<TResult>> reduce)
{
 return source.SelectMany(map)
 .GroupBy(keySelector)
 .SelectMany(reduce);
}

Parallelizing this new combined operator with PLINQ is as simply as changing the input and output types to work

with PLINQ’s ParallelQuery<> type instead of with LINQ’s IEnumerable<>:

C#

public static ParallelQuery<TResult> MapReduce<TSource, TMapped, TKey, TResult>(
 this ParallelQuery<TSource> source,
 Func<TSource, IEnumerable<TMapped>> map,
 Func<TMapped, TKey> keySelector,
 Func<IGrouping<TKey, TMapped>, IEnumerable<TResult>> reduce)
{
 return source.SelectMany(map)
 .GroupBy(keySelector)
 .SelectMany(reduce);
}

USING MAPREDUCE

The typical example used to demonstrate a MapReduce implementation is a word counting routine, where a

bunch of documents are parsed, and the frequency of all of the words across all of the documents is summarized.

For this example, the map function takes in an input document and outputs all of the words in that document. The

grouping phase groups all of the identical words together, such that the reduce phase can then count the words in

each group and output a word/count pair for each grouping:

C#

var files = Directory.EnumerateFiles(dirPath, "*.txt").AsParallel();
var counts = files.MapReduce(
 path => File.ReadLines(path).SelectMany(line => line.Split(delimiters)),
 word => word,
 group => new[] { new KeyValuePair<string, int>(group.Key, group.Count()) });

The tokenization here is done in a naïve fashion using the String.Split function, which accepts the list of characters

to use as delimiters. For this example, that list was generated using another LINQ query that generates an array of

all of the ASCII white space and punctuation characters:

C#

static char[] delimiters =
 Enumerable.Range(0, 256).Select(i => (char)i)
 .Where(c => Char.IsWhiteSpace(c) || Char.IsPunctuation(c))
 .ToArray();

Patterns of Parallel Programming Page 77

DEPENDENCIES

A dependency is the Achilles heel of parallelism. A dependency between two operations implies that one operation

can’t run until the other operation has completed, inhibiting parallelism. Many real-world problems have implicit

dependencies, and thus it’s important to be able to accommodate them and extract as much parallelism as is

possible. With the producer/consumer pattern, we’ve already explored one key solution to specific kinds of

dependencies. Here we’ll examine others.

DIRECTED ACYCLIC GRAPHS

It’s very common in real-world problems to see patterns where dependencies between components form a

directed acyclic graph (DAG). As an example of this, consider compiling a solution of eight code projects. Some

projects have references to other projects, and thus depend on those projects being built first. The dependencies

are as follows:

 Components 1, 2, and 3 depend on nothing else in the solution.

 Component 4 depends on 1.

 Component 5 depends on 1, 2, and 3.

 Component 6 depends on 3 and 4.

 Component 7 depends on 5 and 6 and has no dependencies on it.

 Component 8 depends on 5 and has no dependencies on it.

This set of dependencies forms the following DAG (as rendered by the new Architecture tools in Visual Studio

2010):

If building each component is represented as a Task, we can take advantage of continuations to express as much

parallelism as is possible:

C#

var f = Task.Factory;
var build1 = f.StartNew(() => Build(project1));
var build2 = f.StartNew(() => Build(project2));

Patterns of Parallel Programming Page 78

var build3 = f.StartNew(() => Build(project3));
var build4 = f.ContinueWhenAll(new[] { build1 },
 _ => Build(project4));
var build5 = f.ContinueWhenAll(new[] { build1, build2, build3 },
 _ => Build(project5));
var build6 = f.ContinueWhenAll(new[] { build3, build4 },
 _ => Build(project6));
var build7 = f.ContinueWhenAll(new[] { build5, build6 },
 _ => Build(project7));
var build8 = f.ContinueWhenAll(new[] { build5 },
 _ => Build(project8));
Task.WaitAll(build1, build2, build3, build4, build5, build6, build7, build8);

With this code, we immediately queue up work items to build the first three projects. As those projects complete,

projects with dependencies on them will be queued to build as soon as all of their dependencies are satisfied.

ITERATING IN LOCK STEP

A common pattern in many algorithms is to have a series of operations that need to be done, from 0 to N, where

step i+1 can’t realistically be processed until step i has completed. This often occurs in image processing

algorithms, where processing one scan line of the image depends on the previous scan line having already been

processed. This also frequently occurs in analysis of a system over time, where each iteration represents another

step forward in time, and the world at iteration i+1 depends on the state of the world after iteration i.

An example of the latter is in simple modeling of the dissipation of heat across a metal plate, exemplified by the

following sequential code:

C#

float[,] SequentialSimulation(int plateSize, int timeSteps)
{
 // Initial plates for previous and current time steps, with
 // heat starting on one side
 var prevIter = new float[plateSize, plateSize];
 var currIter = new float[plateSize, plateSize];
 for (int y = 0; y < plateSize; y++) prevIter[y, 0] = 255.0f;

 // Run simulation
 for (int step = 0; step < timeSteps; step++)
 {
 for (int y = 1; y < plateSize - 1; y++)
 {
 for (int x = 1; x < plateSize - 1; x++)
 {
 currIter[y, x] =
 ((prevIter[y, x - 1] +
 prevIter[y, x + 1] +
 prevIter[y - 1, x] +
 prevIter[y + 1, x]) * 0.25f);
 }
 }
 Swap(ref prevIter, ref currIter);
 }

 // Return results

Patterns of Parallel Programming Page 79

 return prevIter;
}

private static void Swap<T>(ref T one, ref T two)
{
 T tmp = one; one = two; two = tmp;
}

On close examination, you’ll see that this can actually be expressed as a DAG, since the cell [y,x] for time step i+1

can be computed as soon as the cells [y,x-1], [y,x+1], [y-1,x], and [y+1,x] from time step i are completed. However,

attempting this kind of parallelization can lead to significant complications. For one, the amount of computation

required per cell is very small, just a few array accesses, additions, and multiplications; creating a new Task for

such an operation is respectively a lot of overhead. Another significant complication is around memory

management. In the serial scheme shown, we only need to maintain two plate arrays, one storing the previous

iteration and one storing the current. Once we start expressing the problem as a DAG, we run into issues of

potentially needing plates (or at least portions of plates) for many generations.

An easier solution is simply to parallelize one or more of the inner loops, but not the outer loop. In effect, we can

parallelize each step of the simulation, just not all time steps of the simulation concurrently:

C#

// Run simulation
for (int step = 0; step < timeSteps; step++)
{
 Parallel.For(1, plateSize - 1, y =>
 {
 for (int x = 1; x < plateSize - 1; x++)
 {
 currIter[y, x] =
 ((prevIter[y, x - 1] +
 prevIter[y, x + 1] +
 prevIter[y - 1, x] +
 prevIter[y + 1, x]) * 0.25f);
 }
 });
 Swap(ref prevIter, ref currIter);
}

Typically, this approach will be sufficient. For some kinds of problems, however, it can be more efficient (largely for

reasons of cache locality) to ensure that the same thread processes the same sections of iteration space on each

time step. We can accomplish that by using Tasks directly, rather than by using Parallel.For. For this heated plate

example, we spin up one Task per processor and assign each a portion of the plate’s size; each Task is responsible

for processing that portion at each time step. Now, we need some way of ensuring that each Task does not go on

to process its portion of the plate at iteration i+1 until all tasks have completed processing iteration i. For that

purpose, we can use the System.Threading.Barrier class that’s new to the .NET Framework 4:

C#

// Run simulation
int numTasks = Environment.ProcessorCount;
var tasks = new Task[numTasks];
var stepBarrier = new Barrier(numTasks, _ => Swap(ref prevIter, ref currIter));
int chunkSize = (plateSize - 2) / numTasks;
for (int i = 0; i < numTasks; i++)

Patterns of Parallel Programming Page 80

{
 int yStart = 1 + (chunkSize * i);
 int yEnd = (i == numTasks - 1) ? plateSize - 1 : yStart + chunkSize;
 tasks[i] = Task.Factory.StartNew(() =>
 {
 for (int step = 0; step < timeSteps; step++)
 {
 for (int y = yStart; y < yEnd; y++)
 {
 for (int x = 1; x < plateSize - 1; x++)
 {
 currIter[y, x] =
 ((prevIter[y, x - 1] +
 prevIter[y, x + 1] +
 prevIter[y - 1, x] +
 prevIter[y + 1, x]) * 0.25f);
 }
 }
 stepBarrier.SignalAndWait();
 }
 });
}
Task.WaitAll(tasks);

Each Task calls the Barrier’s SignalAndWait method at the end of each time step, and the Barrier ensures that no

tasks progress beyond this point in a given iteration until all tasks have reached this point for that iteration.

Further, because we need to swap the previous and current plates at the end of every time step, we register that

swap code with the Barrier as a post-phase action delegate; the Barrier will run that code on one thread once all

Tasks have reached the Barrier in a given iteration and before it releases any Tasks to the next iteration.

DYNAMIC PROGRAMMING

Not to be confused with dynamic languages or with Visual Basic’s and C#’s for dynamic invocation, “dynamic

programming” in computer science is a classification for optimization algorithms that break down problems

recursively into smaller problems, caching (or “memoizing”) the results of those subproblems for future use, rather

than recomputing them every time they’re needed. Common dynamic programming problems include longest

common subsequence, matrix-chain multiplication, string edit distance, and sequence alignment. Dynamic

programming problems are ripe with dependencies, but these dependencies can be bested and typically don’t

prevent parallelization.

To demonstrate parallelization of a dynamic programming program, consider a simple implementation of the

Levenshtein edit distance algorithm:

C#

static int EditDistance(string s1, string s2)
{
 int[,] dist = new int[s1.Length + 1, s2.Length + 1];
 for (int i = 0; i <= s1.Length; i++) dist[i, 0] = i;
 for (int j = 0; j <= s2.Length; j++) dist[0, j] = j;

 for (int i = 1; i <= s1.Length; i++)
 {
 for (int j = 1; j <= s2.Length; j++)

http://video.google.com/videoplay?docid=5819552931286083215
http://video.google.com/videoplay?docid=5819552931286083215

Patterns of Parallel Programming Page 81

 {
 dist[i, j] = (s1[i - 1] == s2[j - 1]) ?
 dist[i - 1, j - 1] :
 1 + Math.Min(dist[i - 1, j],
 Math.Min(dist[i, j - 1],
 dist[i - 1, j - 1]));
 }
 }
 return dist[s1.Length, s2.Length];
}

This algorithm builds up a distance matrix, where the [i,j] entry represents the number of operations it would take

to transform the first i characters of string s1 into the first j characters of s2; an operation is defined as a single

character substitution, insertion, or deletion. To see how this works in action, consider computing the distance

between two strings, going from “PARALLEL" to “STEPHEN”. We start by initializing the first row to the values 0

through 8… these represent deletions (going from “P” to “” requires 1 deletion, going from “PA” to “” requires 2

deletions, going from “PAR” to “” requires 3 deletions, and so on). We also initialize the first column to the values

0 through 7… these represent additions (going from “” to “STEP” requires 4 additions, going from “” to “STEPHEN”

requires 7 additions, and so on).

 P A R A L L E L

 0 1 2 3 4 5 6 7 8

S 1

T 2

E 3

P 4

H 5

E 6

N 7

Now starting from cell [1,1] we walk down each column, calculating each cell’s value in order. Let’s call the two

strings s1 and s2. A cell’s value is based on two potential options:

1. The two characters corresponding with that cell are the same. The value for this cell is the same as the

value for the diagonally previous cell, which represents comparing each of the two strings without the

current letter (for example, if we already know the value for comparing “STEPH” and “PARALL”, the value

for “STEPHE” and “PARALLE” is the same, as we added the same letter to the end of both strings, and thus

the distance doesn’t change).

2. The two characters corresponding with that cell are different. The value for this cell is the minimum of

three potential operations: a deletion, a substitution, or an insertion. These are represented by adding 1

to the value retrieved from the cells immediately above, diagonally to the upper-left, and to the left.

As an exercise, try filling in the table. The completed table for “PARALLEL” and “STEPHEN” is as follows:

Patterns of Parallel Programming Page 82

 P A R A L L E L

 0 1 2 3 4 5 6 7 8

S 1 1 2 3 4 5 6 7 8

T 2 2 2 3 4 5 6 7 8

E 3 3 3 3 4 5 6 6 7

P 4 3 4 4 4 5 6 7 7

H 5 4 4 5 5 5 6 7 8

E 6 5 5 5 6 6 6 6 7

N 7 6 6 6 6 7 7 7 7

As you filled it in, you should have noticed that the numbers were filled in almost as if a wavefront were moving

through the table, since a cell [i,j] can be filled in as soon as the three cells [i-1,j-1], [i-1,j], and [i,j-1] are completed

(and in fact, the completion of the cell above and to the left implies that the diagonal cell was also completed).

From a parallel perspective, this should sound familiar, harkening back to our discussion of DAGs. We could, in fact,

parallelize this problem using one Task per cell and multi-task continuations, but as with previous examples on

dependencies, there’s very little work being done per cell, and the overhead of creating a task for each cell would

significantly outweigh the value of doing so.

You’ll notice, however, that there are macro versions of these micro problems: take any rectangular subset of the

cells in the grid, and that rectangular subset can be completed when the rectangular block above it and to its left

have completed. This presents a solution: we can block the entire matrix up into rectangular regions, run the

algorithm over each block, and use continuations for dependencies between blocks. This amortizes the cost of the

parallelization with tasks across all of the cells in each block, making a Task worthwhile as long as the block is big

enough.

Since the macro problem is the same as the micro, we can write one routine to work with this general pattern,

dubbed the “wavefront” pattern; we can then write a small routine on top of it to deal with blocking as needed.

Here’s an implementation based on Tasks and continuations:

C#

static void Wavefront(
 int numRows, int numColumns, Action<int, int> processRowColumnCell)
{
 // ... Would validate arguments here

 // Store the previous row of tasks as well as the previous task
 // in the current row.
 Task[] prevTaskRow = new Task[numColumns];
 Task prevTaskInCurrentRow = null;
 var dependencies = new Task[2];

 // Create a task for each cell.
 for (int row = 0; row < numRows; row++)
 {

Patterns of Parallel Programming Page 83

 prevTaskInCurrentRow = null;
 for (int column = 0; column < numColumns; column++)
 {
 // In-scope locals for being captured in the task closures.
 int j = row, i = column;

 // Create a task with the appropriate dependencies.
 Task curTask;
 if (row == 0 && column == 0)
 {
 // Upper-left task kicks everything off,
 // having no dependencies.
 curTask = Task.Factory.StartNew(() =>
 processRowColumnCell(j, i));
 }
 else if (row == 0 || column == 0)
 {
 // Tasks in the left-most column depend only on the task
 // above them, and tasks in the top row depend only on
 // the task to their left.
 var antecedent = column == 0 ?
 prevTaskRow[0] : prevTaskInCurrentRow;
 curTask = antecedent.ContinueWith(p =>
 {
 p.Wait(); // Necessary only to propagate exceptions.
 processRowColumnCell(j, i);
 });
 }
 else // row > 0 && column > 0
 {
 // All other tasks depend on both the tasks above
 // and to the left.
 dependencies[0] = prevTaskInCurrentRow;
 dependencies[1] = prevTaskRow[column];
 curTask = Task.Factory.ContinueWhenAll(dependencies, ps =>
 {
 Task.WaitAll(ps); // Necessary to propagate exceptions
 processRowColumnCell(j, i);
 });
 }

 // Keep track of the task just created for future iterations.
 prevTaskRow[column] = prevTaskInCurrentRow = curTask;
 }
 }

 // Wait for the last task to be done.
 prevTaskInCurrentRow.Wait();
}

While a non-trivial amount of code, it’s actually quite straightforward. We maintain an array of Tasks represented

the previous row, and a Task represented the previous Task in the current row. We start by launching a Task to

process the initial Task in the [0,0] slot, since it has no dependencies. We then walk each cell in each row, creating

a continuation Task for each cell. In the first row or the first column, there is just one dependency, the previous

cell in that row or the previous cell in that column, respectively. For all other cells, the continuation is based on the

Patterns of Parallel Programming Page 84

previous cell in both the current row and the current column. At the end, we just wait for the last Task to

complete.

With that code in place, we now need to support blocks, and we can layer another Wavefront function on top to

support that:

C#

static void Wavefront(
 int numRows, int numColumns,
 int numBlocksPerRow, int numBlocksPerColumn,
 Action<int, int, int, int> processBlock)
{
 // ... Would validate arguments here

 // Compute the size of each block.
 int rowBlockSize = numRows / numBlocksPerRow;
 int columnBlockSize = numColumns / numBlocksPerColumn;

 Wavefront(numBlocksPerRow, numBlocksPerColumn, (row, column) =>
 {
 int start_i = row * rowBlockSize;
 int end_i = row < numBlocksPerRow - 1 ?
 start_i + rowBlockSize : numRows;

 int start_j = column * columnBlockSize;
 int end_j = column < numBlocksPerColumn - 1 ?
 start_j + columnBlockSize : numColumns;

 processBlock(start_i, end_i, start_j, end_j);
 });
}

This code is much simpler. The function accepts the number of rows and number of columns, but also the number

of blocks to use. The delegate now accepts four values, the starting and ending position of the block for both row

and column. The function validates parameters, and then computes the size of each block. From there, it delegates

to the Wavefront overload we previously implemented. Inside the delegate, it uses the provided row and column

number along with the block size to compute the starting and ending row and column positions, and then passes

those values down to the user-supplied delegate.

With this Wavefront pattern implementation in place, we can now parallelize our EditDistance function with very

little additional code:

C#

static int ParallelEditDistance(string s1, string s2)
{
 int[,] dist = new int[s1.Length + 1, s2.Length + 1];
 for (int i = 0; i <= s1.Length; i++) dist[i, 0] = i;
 for (int j = 0; j <= s2.Length; j++) dist[0, j] = j;
 int numBlocks = Environment.ProcessorCount * 2;

 Wavefront(s1.Length, s2.Length, numBlocks, numBlocks,
 (start_i, end_i, start_j, end_j) =>
 {
 for (int i = start_i + 1; i <= end_i; i++)

Patterns of Parallel Programming Page 85

 {
 for (int j = start_j + 1; j <= end_j; j++)
 {
 dist[i, j] = (s1[i - 1] == s2[j - 1]) ?
 dist[i - 1, j - 1] :
 1 + Math.Min(dist[i - 1, j],
 Math.Min(dist[i, j - 1],
 dist[i - 1, j - 1]));
 }
 }
 });

 return dist[s1.Length, s2.Length];
}

For small strings, the parallelization overheads will outweigh any benefits. But for large strings, this parallelization

approach can yield significant benefits.

FOLD AND SCAN

Sometimes a dependency is so significant, there is seemingly no way around it. One such example of this is a “fold”

operation. A fold is typically of the following form:

C#

b[0] = a[0];
for (int i = 1; i < N; i++)
{
 b[i] = f(b[i - 1], a[i]);
}

As an example, if the function f is addition and the input array is 1,2,3,4,5, the result of the fold will be 1,3,6,10,15.

Each iteration of the fold operation is entirely dependent on the previous iteration, leaving little room for

parallelism. However, as with aggregations, we can make an accommodation: if we guarantee that the f function is

associative, that enables enough wiggle room to introduce some parallelism (many operations are associative,

including the addition operation used as an example). With this restriction on the operation, it’s typically called a

“scan,” or sometimes “prefix scan.”

There are several ways a scan may be parallelized. An approach we’ll show here is based on blocking. Consider

wanting to parallel scan the input sequence of the numbers 1 through 20 using the addition operator on a quad-

core machine. We can split the input into four blocks, and then in parallel, scan each block individually. Once that

step has completed, we can pick out the top element from each block, and do a sequential, exclusive scan on just

those four entries; in an exclusive scan, element b[i] is what element b[i-1] would have been in a regular (inclusive)

scan, with b[0] initialized to 0. The result of this exclusive scan is that, for each block, we now have the

accumulated value for the entry just before the block, and thus we can fold that value in to each element in the

block. For that latter fold, again each block may be processed in parallel.

Patterns of Parallel Programming Page 86

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 3 6 10 15 6 13 21 30 40 11 23 36 50 65 16 33 51 70 90

Scan Scan Scan Scan

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Logically partition into blocks

15 40 65 90

0 15 55 120

Exclusive Scan

1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 210

Logically Gather Upper Entries

Inclusive Scan Entry into Block

Here is an implementation of this algorithm. As with the heated plate example shown previously, we’re using one

Task per block with a Barrier to synchronize all tasks across the three stages:

1. Scan each block in parallel.

2. Do the exclusive scan of the upper value from each block serially.

3. Scan the exclusive scan results into the blocks in parallel.

One important thing to note about this parallelization is that it incurs significant overhead.

In the sequential scan implementation, we’re executing the combiner function f

approximately N times, where N is the number of entries. In the parallel implementation,

we’re executing f approximately 2N times. As a result, while the operation may be

parallelized, at least two cores are necessary just to break even.

While there are several ways to enforce the serial nature of the second step, here we’re utilizing the Barrier’s post-

phase action delegate (the complete implementation is available at

http://code.msdn.microsoft.com/ParExtSamples):

C#

public static void InclusiveScanInPlaceParallel<T>(
 T[] arr, Func<T, T, T> function)
{

http://code.msdn.microsoft.com/ParExtSamples

Patterns of Parallel Programming Page 87

 int procCount = Environment.ProcessorCount;
 T[] intermediatePartials = new T[procCount];
 using (var phaseBarrier = new Barrier(procCount,
 _ => ExclusiveScanInPlaceSerial(
 intermediatePartials, function, 0, intermediatePartials.Length)))
 {
 // Compute the size of each range.
 int rangeSize = arr.Length / procCount, nextRangeStart = 0;

 // Create, store, and wait on all of the tasks.
 var tasks = new Task[procCount];
 for (int i = 0; i < procCount; i++, nextRangeStart += rangeSize)
 {
 // Get the range for each task, then start it.
 int rangeNum = i;
 int lowerRangeInclusive = nextRangeStart;
 int upperRangeExclusive = i < procCount - 1 ?
 nextRangeStart + rangeSize : arr.Length;
 tasks[rangeNum] = Task.Factory.StartNew(() =>
 {
 // Phase 1: Prefix scan assigned range.
 InclusiveScanInPlaceSerial(arr, function,
 lowerRangeInclusive, upperRangeExclusive, 1);
 intermediatePartials[rangeNum] = arr[upperRangeExclusive - 1];

 // Phase 2: One thread should prefix scan intermediaries.
 phaseBarrier.SignalAndWait();

 // Phase 3: Incorporate partials.
 if (rangeNum != 0)
 {
 for (int j = lowerRangeInclusive;
 j < upperRangeExclusive;
 j++)
 {
 arr[j] = function(
 intermediatePartials[rangeNum], arr[j]);
 }
 }
 });
 }
 Task.WaitAll(tasks);
 }
}

This demonstrates that parallelization may be achieved where dependences would otherwise appear to be an

obstacle that can’t be mitigated.

Patterns of Parallel Programming Page 88

DATA SETS OF UNKNOWN SIZE

Most of the examples described in this document thus far center around data sets of known sizes: input arrays,

input lists, and so forth. In many real-world problems, however, the size of the data set to be processed isn’t

known in advance. This may be because the data is coming in from an external source and hasn’t all arrived yet, or

it may because the data structure storing the data doesn’t keep track of the size or doesn’t store the data in a

manner amenable to the size being relevant. Regardless of the reason, it’s important to be able to parallelize such

problems.

STREAMING DATA

Data feeds are becoming more and more important in all areas of computing. Whether it’s a feed of ticker data

from a stock exchange, a sequence of network packets arriving at a machine, or a series of mouse clicks being

entered by a user, such data can be an important input to parallel implementations.

Parallel.ForEach and PLINQ are the two constructs discussed thus far that work on data streams, in the form of

enumerables. Enumerables, however, are based on a pull-model, such that both Parallel.ForEach and PLINQ are

handed an enumerable from which they continually “move next” to get the next element. This is seemingly

contrary to the nature of streaming data, where it hasn’t all arrived yet, and comes in more of a “push” fashion

rather than “pull”. However, if we think of this pattern as a producer/consumer pattern, where the streaming data

is the producer and the Parallel.ForEach or PLINQ query is the consumer, a solution from the .NET Framework 4

becomes clear: we can use BlockingCollection. BlockingCollection’s GetConsumingEnumerable method provides

an enumerable that can be supplied to either Parallel.ForEach or PLINQ. ForEach and PLINQ will both pull data

from this enumerable, which will block the consumers until data is available to be processed. Conversely, as

streaming data arrives in, that data may be added to the collection so that it may be picked up by the consumers.

C#

private BlockingCollection<T> _streamingData = new BlockingCollection<T>();

// Parallel.ForEach
Parallel.ForEach(_streamingData.GetConsumingEnumerable(),
 item => Process(item));

// PLINQ
var q = from item in _streamingData.GetConsumingEnumerable().AsParallel()
 ...
 select item;

There are several caveats to be aware of here, both for Parallel.ForEach and for PLINQ. Parallel.ForEach and PLINQ

work on slightly different threading models in the .NET Framework 4. PLINQ uses a fixed number of threads to

execute a query; by default, it uses the number of logical cores in the machine, or it uses the value passed to

WithDegreeOfParallelism if one was specified. Conversely, Parallel.ForEach may use a variable number of threads,

based on the ThreadPool’s support for injecting and retiring threads over time to best accommodate current

workloads. For Parallel.ForEach, this means that it’s continually monitoring for new threads to be available to it,

taking advantage of them when they arrive, and the ThreadPool is continually trying out injecting new threads into

the pool and retiring threads from the pool to see whether more or fewer threads is beneficial. However, when

passing the result of calling GetConsumingEnumerable as the data source to Parallel.ForEach, the threads used by

the loop have the potential to block when the collection becomes empty. And a blocked thread may not be

Patterns of Parallel Programming Page 89

released by Parallel.ForEach back to the ThreadPool for retirement or other uses. As such, with the code as shown

above, if there are any periods of time where the collection is empty, the thread count in the process may steadily

grow; this can lead to problematic memory usage and other negative performance implications. To address this,

when using Parallel.ForEach in a streaming scenario, it’s best to place an explicit limit on the number of threads

the loop may utilize: this can be done using the ParallelOptions type, and specifically its MaxDegreeOfParallelism

field:

C#

var options = new ParallelOptions { MaxDegreeOfParallelism = 4 };
Parallel.ForEach(_streamingData.GetConsumingEnumerable(), options,
 item => Process(item));

By adding the bolded code above, the loop is now limited to at most four threads, avoiding the potential for

significant thread consumption. Even if the collection is empty for a long period of time, the loop can block only

four threads at most.

PLINQ has a different set of caveats. It already uses a fixed number of threads, so thread injection isn’t a concern.

Rather, in the .NET Framework 4, PLINQ has an internally hardwired limit on the number of data elements in an

input data source that are supported: 2
31

, or 2,147,483,648. This means that PLINQ should only be used for

streaming scenarios where fewer than this number of elements will be processed. In most scenarios, this limit

should not be problematic. Consider a scenario where each element takes one millisecond to process. It would

take at least 24 days at that rate of processing to exhaust this element space. If this limit does prove troublesome,

however, in many cases there is a valid mitigation. The limit of 2
31

 elements is per execution of a query, so a

potential solution is to simply restart the query after a certain number of items has been fed into the query.

Consider a query of the form:

C#

_streamingData.GetConsumingEnumerable().AsParallel()
 .OtherOperators()
 .ForAll(x => Process(x));

We need two things, a loop around the query so that when one query ends, we start it over again, and an operator

that only yields the first N elements from the source, where N is chosen to be less than the 2
31

 limit. LINQ already

provides us with the latter, in the form of the Take operator. Thus, a workaround would be to rewrite the query as

follows:

C#

while (true)
{
 _streamingData.GetConsumingEnumerable().Take(2000000000).AsParallel()
 .OtherOperators()
 .ForAll(x => Process(x));
}

An additional caveat for PLINQ is that not all operators may be used in a streaming query, due to how those

operators behave. For example, OrderBy performs a sort and releases items in sorted order. OrderBy has no way

of knowing whether the items it has yet to consume from the source are less than the smallest item seem thus far,

and thus it can’t release any elements until it’s seen all elements from the source. With an “infinite” source, as is

the case with a streaming input, that will never happen.

Patterns of Parallel Programming Page 90

PARALLELWHILENOTEMPTY

There’s a fairly common pattern that emerges when processing some data structures: the processing of an

element yields additional work to be processed. We can see this with the tree-walk example shown earlier in this

document: processing one node of the tree may yield additional work to be processed in the form of that node’s

children. Similarly in processing a graph data structure, processing a node may yield additional work to be

processed in the form of that node’s neighbors.

Several parallel frameworks include a construct focused on processing these kinds of workloads. No such construct

is included in the .NET Framework 4, however it’s straightforward to build one. There are a variety of ways such a

solution may be coded. Here’s one:

C#

public static void ParallelWhileNotEmpty<T>(
 IEnumerable<T> initialValues, Action<T, Action<T>> body)
{
 var from = new ConcurrentQueue<T>(initialValues);
 var to = new ConcurrentQueue<T>();

 while (!from.IsEmpty)
 {
 Action<T> addMethod = v => to.Enqueue(v);
 Parallel.ForEach(from, v => body(v, addMethod));
 from = to;
 to = new ConcurrentQueue<T>();
 }
}

This solution is based on maintaining two lists of data: the data currently being processed (the “from” queue), and

the data generated by the processing of the current data (the “to” queue). The initial values to be processed are

stored into the first list. All those values are processed, and any new values they create are added to the second

list. Then the second list is processed, and any new values that are produced go into a new list (or alternatively the

first list cleared out). Then that list is processed, and... so on. This continues until the next list to be processed has

no values available.

With this in place, we can rewrite our tree walk implementation shown previously:

C#

static void Walk<T>(Tree<T> root, Action<T> action)
{
 if (root == null) return;
 ParallelWhileNotEmpty(new[] { root }, (item, adder) =>
 {
 if (item.Left != null) adder(item.Left);
 if (item.Right != null) adder(item.Right);
 action(item.Data);
 });
}

Patterns of Parallel Programming Page 91

ANTI-PATTERNS

BLOCKING DEPENDENCIES BETWEEN PARTITIONED CHUNKS

As mentioned, there are several ways ParallelWhileNotEmpty could be implemented. Another approach to

implementing ParallelWhileNotEmpty combines two parallel patterns we’ve previously seen in this document:

counting up and down, and streaming. Simplistically, we can use a Parallel.ForEach over a BlockingCollection’s

GetConsumingEnumerable, and allow the body of the ForEach to add more items into the BlockingCollection. The

only thing missing, then, is the ability to mark the collection as complete for adding, which we only want to do

after the last element has been processed (since the last element may result in more elements being added). To

accomplish that, we keep track of the number of elements remaining to complete processing; every time the

adder operation is invoked, we increase this count, and every time we complete the processing of an item we

decrease it. If the act of decreasing it causes it to reach 0, we’re done, and we can mark the collection as complete

for adding so that all threads involved in the ForEach will wake up.

C#

// WARNING: THIS METHOD HAS A BUG
static void ParallelWhileNotEmpty<T>(
 IEnumerable<T> source, Action<T, Action<T>> body)
{
 var queue = new ConcurrentQueue<T>(source);
 if (queue.IsEmpty) return;

 var remaining = new CountdownEvent(queue.Count);
 var bc = new BlockingCollection<T>(queue);
 Action<T> adder = item => {
 remaining.AddCount();
 bc.Add(item);
 };
 var options = new ParallelOptions {
 MaxDegreeOfParallelism = Environment.ProcessorCount
 };
 Parallel.ForEach(bc.GetConsumingEnumerable(), options, item =>
 {
 try { body(item, adder); }
 finally {
 if (remaining.Signal()) bc.CompleteAdding();
 }
 });
}

Unfortunately, this implementation has a devious bug in it, one that will likely result in deadlock close to the end of

its execution such that ParallelWhileNotEmpty will never return. The issue has to do with partitioning.

Parallel.ForEach uses multiple threads to process the supplied data source (in this case, the result of calling

bc.GetConsumingEnumerable), and as such the data from that source needs to be dispensed to those threads. By

default, Parallel.ForEach does this by having its threads take a lock, pull some number of elements from the

source, release the lock, and then process those items. This is a performance optimization for the general case,

where the number of trips back to the data source and the number of times the lock must be acquired and

released is minimized. However, it’s then also very important that the processing of elements not have

dependencies between them.

Patterns of Parallel Programming Page 92

Consider a very simple example:

C#

var mres = new ManualResetEventSlim();
Parallel.ForEach(Enumerable.Range(0, 10), i =>
{
 if (i == 7) mres.Set();
 else mres.Wait();
});

Theoretically, this code could deadlock. All iterations have a dependency on iteration #7 executing, and yet the

same thread that executed one of the other iterations may be the one destined to execute #7. To see this, consider

a potential partitioning of the input data [0,10), where every thread grabs two elements at a time:

0 1 2 3 4 5 6 7 8 9

Here, the same thread grabbed both elements 6 and 7. It then processes 6, which immediately blocks waiting for

an event that will only be set when 7 is processed, but 7 won’t ever be processed, because the thread that would

process it is blocked processing 6.

Back to our ParallelWhileNotEmpty example, a similar issue exists there but is less obvious. The last element to be

processed marks the BlockingCollection as complete for adding, which will cause any threads waiting on the

empty collection to wake up, aware that no more data will be coming. However, threads are pulling multiple data

elements from the source on each go around, and are not processing the elements from that chunk until the chunk

contains a certain number of elements. Thus, a thread may grab what turns out to be the last element, but then

continues to wait for more elements to arrive before processing it; however, only when that last element is

processed will the collection signal to all waiting threads that there won’t be any more data, and we have a

deadlock.

We can fix this by modifying the partitioning such that every thread only goes for one element at a time. That has

the downside of resulting in more overhead per element, since each element will result in a lock being taken, but it

has the serious upside of not resulting in deadlock. To control that, we can supply a custom partitioner that

provides this functionality. The parallel programming samples for the .NET Framework 4, available for download at

http://code.msdn.microsoft.com/ParExtSamples includes a ChunkPartitioner capable of yielding a single element

at a time. Taking advantage of that, we get the following fixed solution:

C#

static void ParallelWhileNotEmpty<T>(
 IEnumerable<T> source, Action<T, Action<T>> body)
{
 var queue = new ConcurrentQueue<T>(source);
 if (queue.IsEmpty) return;

 var remaining = new CountdownEvent(queue.Count);
 var bc = new BlockingCollection<T>(queue);

http://code.msdn.microsoft.com/ParExtSamples

Patterns of Parallel Programming Page 93

 Action<T> adder = t => {
 remaining.AddCount();
 bc.Add(t);
 };
 var options = new ParallelOptions {
 MaxDegreeOfParallelism = Environment.ProcessorCount
 };
 Parallel.ForEach(ChunkPartitioner.Create(bc.GetConsumingEnumerable(), 1),
 options, item =>
 {
 try { body(item, adder); }
 finally {
 if (remaining.Signal()) bc.CompleteAdding();
 }
 });
}

Patterns of Parallel Programming Page 94

SPECULATIVE PROCESSING

Speculation is the pattern of doing something that may not be needed in case it actually is needed. This is

increasing relevant to parallel computing, where we can take advantage of multiple cores to do more things in

advance of their actually being needed. Speculation trades off throughput for reduced latency, by utilizing

resources to do more work in case that extra work could pay dividends.

THERE CAN BE ONLY ONE

There are many scenarios where multiple mechanisms may be used to compute a result, but how long each

mechanism will take can’t be predicted in advance. With serial computing, you’re forced to pick one and hope that

it’s the fastest. With parallel computing, we can theoretically run them all in parallel: once we have a winner, we

can stop running the rest of the operations.

We can encapsulate this functionality into a SpeculativeInvoke operation. SpeculativeInvoke will take a set of

functions to be executed, and will start executing them in parallel until at least one returns.

C#

public static T SpeculativeInvoke<T>(params Func<T>[] functions);

As mentioned earlier in the section on parallel loops, it’s possible to implement Invoke in terms of ForEach… we

can do the same here for SpeculativeInvoke:

C#

public static T SpeculativeInvoke<T>(params Func<T>[] functions)
{
 return SpeculativeForEach(functions, function => function());
}

Now all we need is a SpeculativeForEach.

SPECULATIVEFOREACH USING PARALLEL.FOREACH

With ForEach, the goal is to process every item. With SpeculativeForEach, the goal is to get just one result,

executing as many items as we can in parallel in order to get just one to return.

C#

public static TResult SpeculativeForEach<TSource, TResult>(
 IEnumerable<TSource> source,
 Func<TSource, TResult> body)
{
 object result = null;
 Parallel.ForEach(source, (item, loopState) =>
 {
 result = body(item);
 loopState.Stop();
 });
 return (TResult)result;
}

Patterns of Parallel Programming Page 95

We take advantage of Parallel.ForEach’s support for breaking out of a loop early, using ParallelLoopState.Stop.

This tells the loop to try not to start any additional iterations. When we get a result from an iteration, we store it,

request that the loop stop as soon as possible, and when the loop is over, return the result. A

SpeculativeParallelFor could be implemented in a very similar manner.

Note that we store the result as an object, rather than as a TResult. This is to

accommodate value types. With multiple iterations executing in parallel, it’s possible

that multiple iterations may try to write out a result concurrently. With reference

types, this isn’t a problem, as the CLR ensures that all of the data in a reference is

written atomically. But with value types, we could potentially experience “torn

writes,” where portions of the results from multiple iterations get written, resulting in

an incorrect result.

As noted, when an iteration completes it does not terminate other currently running iterations, it only works to

prevent additional iterations from starting. If we want to update the implementation to also make it possible to

cancel currently running iterations, we can take advantage of the .NET Framework 4 CancellationToken type. The

idea is that we’ll pass a CancellationToken into all functions, and the functions themselves may monitor for

cancellation, breaking out early if cancellation was experienced.

C#

public static TResult SpeculativeForEach<TSource, TResult>(
 IEnumerable<TSource> source,
 Func<TSource, CancellationToken, TResult> body)
{
 var cts = new CancellationTokenSource();
 object result = null;
 Parallel.ForEach(source, (item, loopState) =>
 {
 try
 {
 result = body(item, cts.Token);
 loopState.Stop();
 cts.Cancel();
 }
 catch (OperationCanceledException) { }
 });
 return (TResult)result;
}

SPECULATIVEFOREACH USING PLINQ

We can also achieve this kind of speculative processing utilizing PLINQ. The goal of SpeculativeForEach is to select

the result of the first function to complete, an operation which maps very nicely to PLINQ’s Select and First

operators. We can thus re-implement SpeculativeForEach with very little PLINQ-based code:

C#

public static TResult SpeculativeForEach<TSource, TResult>(
 IEnumerable<TSource> source, Func<TSource, TResult> body)
{

Patterns of Parallel Programming Page 96

 if (body == null) throw new ArgumentNullException("body");
 return source.AsParallel().Select(i => body(i)).First();
}

FOR THE FUTURE

The other large classification of speculative processing is around anticipation: an application can anticipate a need,

and do some computation based on that guess. Prefetching, common in hardware and operating systems, is an

example of this. Based on past experience and heuristics, the system anticipates that the program is going to need

a particular resource and thus preloads that resource so that it’s available by the time it’s needed. If the system

guessed correctly, the end result is improved perceived performance.

Task<TResult> in the .NET Framework 4 makes it very straightforward to implement this kind of logic. When the

system anticipates a particular computation’s result may be needed, it launches a Task<TResult> to compute the

result.

C#

var cts = new CancellationTokenSource();
Task<int> dataForThefuture = Task.Factory.StartNew(
 () => ComputeSomeResult(), cts.Token);

If it turns out that result is not needed, the task may be canceled.

C#

// Cancel it and make sure we are made aware of any exceptions
// that occurred.
cts.Cancel();
dataForTheFuture.ContinueWith(t => LogException(dataForTheFuture),
 TaskContinuationOptions.OnlyOnFaulted);

If it turns out it is needed, its Result may be retrieved.

C#

// This will return the value immediately if the Task has already
// completed, or will wait for the result to be available if it’s
// not yet completed.
int result = dataForTheFuture.Result;

Patterns of Parallel Programming Page 97

LAZINESS

Programming is one of few professional areas where laziness is heralded. As we write software, we look for ways

to improve performance, or at least to improve perceived performance, and laziness helps in both of these

regards.

Lazy evaluation is all about delaying a computation such that it’s not evaluated until it’s needed. In doing so, we

may actually get away with never evaluating it at all, since it may never be needed. And other times, we can make

the cost of evaluating lots of computations “pay-for-play” by only doing those computations when they’re needed

and not before. (In a sense, this is the opposite of speculative computing, where we may start computations

asynchronously as soon as we think they may be needed, in order to ensure the results are available if they’re

needed.)

Lazy evaluation is not something at all specific to parallel computing. LINQ is heavily based on a lazy evaluation

model, where queries aren’t executed until MoveNext is called on an enumerator for the query. Many types lazily-

load data, or lazily initialize properties. Where parallelization comes into play is in making it possible for multiple

threads to access lazily-evaluated data in a thread-safe manner.

ENCAPSULATING LAZINESS

Consider the extremely common pattern for lazily-initializing some property on a type:

C#

public class MyLazy<T> where T : class
{
 private T _value;

 public T Value
 {
 get
 {
 if (_value == null) _value = Compute();
 return _value;
 }
 }

 private static T Compute() { /*...*/ }
}

Here, the _value field needs to be initialized to the result of some function Compute. _value could have been

initialized in the constructor of MyLazy<T>, but that would have forced the user to incur the cost of computing

_value, even if the Value property is never accessed. Instead, the Value property’s get accessor checks to see

whether _value has been initialized, and if it hasn’t, initializes it before returning _value. The initialization check

happens by comparing _value to null, hence the class restriction on T, since a struct may never be null.

Unfortunately, this pattern breaks down if the Value property may be accessed from multiple threads

concurrently. There are several common patterns for dealing with this predicament. The first is through locking:

Patterns of Parallel Programming Page 98

C#

public class MyLazy<T> where T : class
{
 private object _syncObj = new object();
 private T _value;

 public T Value
 {
 get
 {
 lock (_syncObj)
 {
 if (_value == null) _value = Compute();
 return _value;
 }
 }
 }

 private static T Compute() { /*...*/ }
}

Now, the Value property is thread-safe, such that only one thread at a time will execute the body of the get

accessor. Unfortunately, we also now force every caller of Value to accept the cost of taking a lock, even if Value

has already previously been initialized. To work around that, there’s the classic double-checked locking pattern:

C#

public class MyLazy<T> where T : class
{
 private object _syncObj = new object();
 private volatile T _value;

 public T Value
 {
 get
 {
 if (_value == null)
 {
 lock(_syncObj)
 {
 if (_value == null) _value = Compute();
 }
 }
 return _value;
 }

 private static T Compute() { /*...*/ }
}

This is starting to get complicated, with much more code having to be written than was necessary for the initial

non-thread-safe version. Moreover, we haven’t factored in the complications of exception handling, supporting

value types in addition to reference types (and having to deal with potential “torn reads” and “torn writes”), cases

where null is a valid value, and more. To simplify this, all aspects of the pattern, including the synchronization to

ensure thread-safety, have been codified into the new .NET Framework 4 System.Lazy<T> type. We can re-write

the code using Lazy<T> as follows:

Patterns of Parallel Programming Page 99

C#

public class MyLazy<T>
{
 private Lazy<T> _value = new Lazy<T>(Compute);

 public T Value { get { return _value.Value; } }

 private static T Compute() { /*...*/ }
}

Lazy<T> supports the most common form of thread-safe initialization through a simple-to-use interface. If more

control is needed, the static methods on System.Threading.LazyInitializer may be employed.

The double-checked locking pattern supported by Lazy<T> is also supported by LazyInitializer, but through a single

static method:

C#

public static T EnsureInitialized<T>(
 ref T target, ref bool initialized,
 ref object syncLock,
 Func<T> valueFactory);

This overload allows the developer to specify the target reference to be initialized as well as a Boolean value that

signifies whether initialization has been completed. It also allows the developer to explicitly specify the monitor

object to be used for synchronization.

Being able to explicitly specify the synchronization object allows multiple

initialization routines and fields to be protected by the same lock.

We can use this method to re-implement our previous examples as follows:

C#

public class MyLazy<T> where T : class
{
 private object _syncObj = new object();
 private bool _initialized;
 private T _value;

 public T Value
 {
 get
 {
 return LazyInitializer.EnsureInitialized(
 ref _value, ref _initialized, ref _syncObj, Compute);
 }
 }

 private static T Compute() { /*...*/ }
}

This is not the only pattern supported by LazyInitializer, however. Another less-common thread-safe initialization

pattern is based on the principle that the initialization function is itself thread-safe, and thus it’s okay for it to be

executed concurrently with itself. Given that property, we no longer need to use a lock to ensure that only one

Patterns of Parallel Programming Page 100

thread at a time executes the initialization function. However, we still need to maintain the invariant that the value

being initialized is only initialized once. As such, while the initialization function may be run multiple times

concurrently in the case of multiple threads racing to initialize the value, one and only one of the resulting values

must be published for all threads to see. If we were writing such code manually, it might look as follows:

C#

public class MyLazy<T> where T : class
{
 private volatile T _value;

 public T Value
 {
 get
 {
 if (_value == null)
 {
 T temp = Compute();
 Interlocked.CompareExchange(ref _value, temp, null);
 }
 return _value;
 }
 }

 private static T Compute() { /*...*/ }
}

LazyInitializer provides an overload to support this pattern as well:

C#

public static T EnsureInitialized<T>(
 ref T target, Func<T> valueFactory) where T : class;

With this method, we can re-implement the same example as follows:

C#

public class MyLazy<T> where T : class
{
 private T _value;

 public T Value
 {
 get
 {
 return LazyInitializer.EnsureInitialized(ref _value, Compute);
 }
 }

 private static T Compute() { /*...*/ }
}

It’s worth noting that in these cases, if the Compute function returns null, _value will be set to null, which is

indistinguishable from Compute never having been run, and as a result the next time Value’s get accessor is

invoked, Compute will be executed again.

Patterns of Parallel Programming Page 101

ASYNCHRONOUS LAZINESS

Another common pattern centers around a need to lazily-initialize data asynchronously and to receive notification

when the initialization has completed. This can be accomplished by marrying two types we’ve already seen:

Lazy<T> and Task<TResult>.

Consider an initialization routine:

C#

T Compute();

We can create a Lazy<T> to provide the result of this function:

C#

Lazy<T> data = new Lazy<T>(Compute);

However, now when we access data.Value, we’re blocked waiting for the Compute operation to complete.

Instead, for asynchronous lazy initialization, we’d like to delay the computation until we know we’ll need it, but

once we do we also don’t want to block waiting for it to complete. That latter portion should hint at using a

Task<TResult>:

C#

Task<T> data = Task<T>.Factory.StartNew(Compute);

Combining the two, we can use a Lazy<Task<T>> to get both the delayed behavior and the asynchronous behavior:

C#

var data = new Lazy<Task<T>>(() => Task<T>.Factory.StartNew(Compute));

Now when we access data.Value, we get back a Task<T> that represents the running of Compute. No matter how

many times we access data.Value, we’ll always get back the same Task, even if accessed from multiple threads

concurrently, thanks to support for the thread-safety patterns built into Lazy<T>. This means that only one

Task<T> will be launched for Compute. Moreover, we can now use this result as we would any other Task<T>,

including registering continuations with it (using ContinueWith) in order to be notified when the computation is

complete:

C#

data.Value.ContinueWith(t => UseResult(t.Result));

This approach can also be combined with multi-task continuations to lazily-initialize multiple items, and to only do

work with those items when they’ve all completed initialization:

C#

private Lazy<Task<T>> _data1 = new Lazy<Task<T>>(() =>
 Task<T>.Factory.StartNew(Compute1));
private Lazy<Task<T>> _data2 = new Lazy<Task<T>>(() =>
 Task<T>.Factory.StartNew(Compute2));
private Lazy<Task<T>> _data3 = new Lazy<Task<T>>(() =>
 Task<T>.Factory.StartNew(Compute3));
//...

Patterns of Parallel Programming Page 102

Task.Factory.ContinueWhenAll(
 new [] { _data1.Value, _data2.Value, _data3.Value },
 tasks => UseResults(_data1.Value.Result, _data2.Value.Result,

 _data3.Value.Result));

Such laziness is also useful for certain patterns of caching, where we want to maintain a cache of these lazily-

initialized values. Consider a non-thread-safe cache like the following:

C#

public class Cache<TKey, TValue>
{
 private readonly Func<TKey, TValue> _valueFactory;
 private readonly Dictionary<TKey, TValue> _map;

 public Cache(Func<TKey, TValue> valueFactory)
 {
 if (valueFactory == null) throw new ArgumentNullException("loader");
 _valueFactory = valueFactory;
 _map = new Dictionary<TKey, TValue>();
 }

 public TValue GetValue(TKey key)
 {
 if (key == null) throw new ArgumentNullException("key");

 TValue val;
 if (!_map.TryGetValue(key, out val))
 {
 val = _valueFactory(key);
 _map.Add(key, val);
 }
 return val;
 }
}

The cache is initialized with a function that produces a value based on a key supplied to it. Whenever the value of a

key is requested from the cache, the cache returns the cached value for the key if one is available in the internal

dictionary, or it generates a new value using the cache’s _valueFactory function, stores that value for later, and

returns it.

We now want an asynchronous version of this cache. Just like with our asynchronous laziness functionality, we can

represent this as a Task<TValue> rather than simply as a TValue. Multiple threads will be accessing the cache

concurrently, so we want to use a ConcurrentDictionary<TKey,TValue> instead of a Dictionary<TKey,TValue>

(ConcurrentDictionary<> is a new map type available in the .NET Framework 4, supporting multiple readers and

writers concurrently without corrupting the data structure).

C#

public class AsyncCache<TKey, TValue>
{
 private readonly Func<TKey, Task<TValue>> _valueFactory;
 private readonly ConcurrentDictionary<TKey, Lazy<Task<TValue>>> _map;

 public AsyncCache(Func<TKey, Task<TValue>> valueFactory)
 {

Patterns of Parallel Programming Page 103

 if (valueFactory == null) throw new ArgumentNullException("loader");
 _valueFactory = valueFactory;
 _map = new ConcurrentDictionary<TKey, Lazy<Task<TValue>>>();
 }

 public Task<TValue> GetValue(TKey key)
 {
 if (key == null) throw new ArgumentNullException("key");
 return _map.GetOrAdd(key,
 k => new Lazy<Task<TValue>>(() => _valueFactory(k))).Value;
 }
}

The function now returns a Task<TValue> instead of just TValue, and the dictionary stores Lazy<Task<TValue>>

rather than just TValue. The latter is done so that if multiple threads request the value for the same key

concurrently, only one task for that value will be generated.

Note the GetOrAdd method on ConcurrentDictionary. This method was added in recognition of a very common

coding pattern with dictionaries, exemplified in the earlier synchronous cache example. It’s quite common to want

to check a dictionary for a value, returning that value if it could be found, otherwise creating a new value, adding

it, and returning it, as exemplified in the following example:

C#

public static TValue GetOrAdd<TKey, TValue>(
 this Dictionary<TKey, TValue> dictionary,
 TKey key, Func<TKey, TValue> valueFactory)
{
 TValue value;
 if (!dictionary.TryGetValue(key, out value))
 {
 value = valueFactory(key);
 dictionary.Add(key, value);
 }
 return value;
}

This pattern has been codified into ConcurrentDictionary in a thread-safe manner in the form of the GetOrAdd

method. Similarly, another coding pattern that’s quite common with dictionaries is around checking for an existing

value in the dictionary, updating that value if it could be found or adding a new one if it couldn’t.

C#

public static TValue AddOrUpdate<TKey, TValue>(
 this Dictionary<TKey, TValue> dictionary,
 TKey key,
 Func<TKey, TValue> addValueFactory,
 Func<TKey, TValue, TValue> updateValueFactory)
{
 TValue value;
 value = dictionary.TryGetValue(key, out value) ?
 updateValueFactory(key, value) : addValueFactory(key);
 dictionary[key] = value;
 return value;
}

Patterns of Parallel Programming Page 104

This pattern has been codified into ConcurrentDictionary in a thread-safe manner in the form of the AddOrUpdate

method.

Patterns of Parallel Programming Page 105

SHARED STATE

Dealing with shared state is arguably the most difficult aspect of building parallel applications and is one of the

main sources of both correctness and performance problems. There are several ways of dealing with shared state,

including synchronization, immutability, and isolation. With synchronization, the shared state is protected by

mechanisms of mutual exclusion to ensure that the data remains consistent in the face of multiple threads

accessing and modifying it. With immutability, shared data is read-only, and without being modified, there’s no

danger in sharing it. With isolation, sharing is avoided, with threads utilizing their own isolated state that’s not

available to other threads.

ISOLATION & THREAD-LOCAL STATE

Thread-local state is a very common mechanism for supporting isolation, and there are several reasons why you

might want to use thread-local state. One is to pass information out-of-band between stack frames. For example,

the System.Transactions.TransactionScope class is used to register some ambient information for the current

thread, such that operations (for example, commands against a database) can automatically enlist in the ambient

transaction. Another use of thread-local state is to maintain a cache of data per thread rather than having to

synchronize on a shared data source. For example, if multiple threads need random numbers, each thread can

maintain its own Random instance, accessing it freely and without concern for another thread accessing it

concurrently; an alternative would be to share a single Random instance, locking on access to it.

Thread-local state is exposed in the .NET Framework 4 in three different ways. The first way, and the most

efficient, is through the ThreadStaticAttribute. By applying [ThreadStatic] to a static field of a type, that field

becomes a thread-local static, meaning that rather than having one field of storage per AppDomain (as you would

with a traditional static), there’s one field of storage per thread per AppDomain.

Hearkening back to our randomness example, you could imagine trying to initialize a ThreadStatic Random field as

follows:

C#

[ThreadStatic]
static Random _rand = new Random(); // WARNING: buggy

static int GetRandomNumber()
{
 return _rand.Next();
}

Unfortunately, this won’t work as expected. The C# and Visual Basic compilers extract initialization for

static/Shared members into a static/Shared constructor for the containing type, and a static constructor is only run

once. As such, this initialization code will only be executed for one thread in the system, leaving the rest of the

threads with _rand initialized to null. To account for this, we need to check prior to accessing _rand to ensure it’s

been initialized, invoking the initialization code on each access if it hasn’t been:

 C#

[ThreadStatic]
static Random _rand;

static int GetRandomNumber()

Patterns of Parallel Programming Page 106

{
 if (_rand == null) _rand = new Random();
 return _rand.Next();
}

Any thread may now call GetRandomNumber, and any number of threads may do so concurrently; each will end

up utilizing its own instance of Random. Another issue with this approach is that, unfortunately, [ThreadStatic]

may only be used with statics. Applying this attribute to an instance member is a no-op, leaving us in search of

another mechanism for supporting per-thread, per-instance state.

Since the original release of the .NET Framework, thread-local storage has been supported in a more general form

through the Thread.GetData and Thread.SetData static methods. The Thread.AllocateDataSlot and

Thread.AllocateNamedDataSlot static methods may be used to create a new LocalDataStoreSlot, representing a

single object of storage. The GetData and SetData methods can then be used to get and set that object for the

current thread. Re-implementing our previous Random example could be done as follows:

C#

static LocalDataStoreSlot _randSlot = Thread.AllocateDataSlot();

static int GetRandomNumber()
{
 Random rand = (Random)Thread.GetData(_randSlot);
 if (rand == null)
 {
 rand = new Random();
 Thread.SetData(_randSlot, rand);
 }
 return rand.Next();
}

However, since our thread-local storage is now represented as an object (LocalDataStoreSlot) rather than as a

static field, we can use this mechanism to achieve the desired per-thread, per-instance data:

C#

public class MyType
{
 private LocalDataStoreSlot _rand = Thread.AllocateDataSlot();

 public int GetRandomNumber()
 {
 Random r = (Random)Thread.GetData(_rand);
 if (r == null)
 {
 r = new Random();
 Thread.SetData(_rand, r);
 }
 return r.Next();
 }
}

While flexible, this approach also has downsides. First, Thread.GetData and Thread.SetData work with type Object

rather than with a generic type parameter. In the best case, the data being stored is a reference type, and we only

need to cast to retrieve data from a slot, knowing in advance what kind of data is stored in that slot. In the worst

case, the data being stored is a value type, forcing an object allocation every time the data is modified, as the value

Patterns of Parallel Programming Page 107

type gets boxed when passed into the Thread.SetData method. Another issue is around performance. The

ThreadStaticAttribute approach has always been significantly faster than the Thread.GetData/SetData approach,

and while both mechanisms have been improved for the .NET Framework 4, the ThreadStaticAttribute approach is

still an order of magnitude faster. Finally, with Thread.GetData/SetData, the reference to the storage and the

capability for accessing that storage are separated out into individual APIs, rather than being exposed in a

convenient manner that combines them in an object-oriented manner.

To address these shortcomings, the .NET Framework 4 introduces a third thread-local storage mechanism:

ThreadLocal<T>. ThreadLocal<T> addresses the shortcomings outlined:

 ThreadLocal<T> is generic. It’s Value property is typed as T and the data is stored in a generic manner.

This eliminates the need to cast when accessing the value, and it eliminates the boxing that would

otherwise occur if T were a value type.

 The constructor for ThreadLocal<T> optionally accepts a Func<T> delegate. This delegate can be used to

initialize the thread-local value on every accessing thread. This alleviates the need to explicitly check on

every access to ThreadLocal<T>.Value whether it’s been initialized yet.

 ThreadLocal<T> encapsulates both the data storage and the mechanism for accessing that storage. This

simplifies the pattern of accessing the storage, as all that’s required is to utilize the Value property.

 ThreadLocal<T>.Value is fast. ThreadLocal<T> has a sophisticated implementation based on

ThreadStaticAttribute that makes the Value property more efficient than Thread.GetData/SetData.

ThreadLocal<T> is still not as fast as ThreadStaticAttribute, so if ThreadStaticAttribute fits your needs well and if

access to thread-local storage is a bottleneck on your fast path, it should still be your first choice. Additionally, a

single instance of ThreadLocal<T> consumes a few hundred bytes, so you need to consider how many of these you

want active at any one time.

Regardless of what mechanism for thread-local storage you use, if you need thread-local storage for several

successive operations, it’s best to work on a local copy so as to avoid accessing thread-local storage as much as

possible. For example, consider adding two vectors stored in thread-local storage:

C#

const int VECTOR_LENGTH = 1000000;
private ThreadLocal<int[]> _vector1 =
 new ThreadLocal<int[]>(() => new int[VECTOR_LENGTH]);
private ThreadLocal<int[]> _vector2 =
 new ThreadLocal<int[]>(() => new int[VECTOR_LENGTH]);
// ...

private void DoWork()
{
 for(int i=0; i<VECTOR_LENGTH; i++)
 {
 _vector2.Value[i] += _vector1.Value[i];
 }
}

While the cost of accessing ThreadLocal<T>.Value has been minimized as best as possible in the implementation, it

still has a non-negligible cost (the same is true for accessing ThreadStaticAttribute). As such, it’s much better to

rewrite this code as follows:

Patterns of Parallel Programming Page 108

C#

private void DoWork()
{
 int [] vector1 = _vector1.Value;
 int [] vector2 = _vector2.Value;
 for(int i=0; i<VECTOR_LENGTH; i++)
 {
 vector2[i] += vector1[i];
 }
 _vector2.Value = vector2;
}

Returning now to our previous example of using a thread-local Random, we can take advantage of ThreadLocal<T>

to implement this support in a much more concise manner:

C#

public class MyType
{
 private ThreadLocal<Random> _rand =
 new ThreadLocal<Random>(() => new Random());

 public int GetRandomNumber() { return _rand.Value.Next(); }
}

Earlier in this document, it was mentioned that the ConcurrentBag<T> data structure

maintains a list of instances of T per thread. This is achieved internally using

ThreadLocal<>.

SYNCHRONIZATION

In most explicitly-threaded parallel applications, no matter how much we try, we end up with some amount of

shared state. Accessing shared state from multiple threads concurrently requires that either that shared state be

immutable or that the application utilize synchronization to ensure the consistency of the data.

RELIABLE LOCK ACQUISITION

By far, the most prevalent pattern for synchronization in the .NET Framework is in usage of the lock keyword in C#

and the SyncLock keyword in Visual Basic. Compiling down to usage of Monitor under the covers, this pattern

manifests as follows:

C#

lock (someObject)
{
 // ... critical region of code
}

Patterns of Parallel Programming Page 109

This code ensures that the work inside the critical region is executed by at most one thread at a time. In C# 3.0 and

earlier and Visual Basic 9.0 and earlier, the above code was compiled down to approximately the equivalent of the

following:

C#

var lockObj = someObject;
Monitor.Enter(lockObj);
try
{
 // ... critical region of code
}
finally
{
 Monitor.Exit(lockObj);
}

This code ensures that even in the case of exception, the lock is released when the critical region is done. Or at

least it’s meant to. A problem emerges due to asynchronous exceptions: external influences may cause exceptions

to occur on a block of code even if that exception is not explicitly stated in the code. In the extreme case, a thread

abort may be injected into a thread between any two instructions, though not within a finally block except in

extreme conditions. If such an abort occurred after the call to Monitor.Enter but prior to entering the try block,

the monitor would never be exited, and the lock would be “leaked.” To help prevent against this, the just-in-time

(JIT) compiler ensures that, as long as the call to Monitor.Enter is the instruction immediately before the try block,

no asynchronous exception will be able to sneak in between the two. Unfortunately, it’s not always the case that

these instructions are immediate neighbors. For example, in debug builds, the compiler uses nop instructions to

support setting breakpoints in places that breakpoints would not otherwise be feasible. Worse, it’s often the case

that developers want to enter a lock conditionally, such as with a timeout, and in such cases there are typically

branching instructions between the call and entering the try block:

C#

if (Monitor.TryEnter(someObject, 1000))
{
 try
 {
 // ... critical region of code
 }
 finally
 {
 Monitor.Exit(someObject);
 }
}
else { /*...*/ }

To address this, in the .NET Framework 4 new overloads of Monitor.Enter (and Monitor.TryEnter) have been

added, supporting a new pattern of reliable lock acquisition and release:

C#

public static void Enter(object obj, ref bool lockTaken);

This overload guarantees that the lockTaken parameter is initialized by the time Enter returns, even in the face of

asynchronous exceptions. This leads to the following new, reliable pattern for entering a lock:

Patterns of Parallel Programming Page 110

C#

bool lockTaken = false;
try
{
 Monitor.Enter(someObject, ref lockTaken);
 // ... critical region of code
}
finally
{
 if (lockTaken) Monitor.Exit(someObject);
}

In fact, code similar to this is what the C# and Visual Basic compilers output in the .NET Framework 4 for the lock

and SyncLock construct. This pattern applies equally to TryEnter, with only a slight modification:

C#

bool lockTaken = false;
try
{
 Monitor.TryEnter(someObject, 1000, ref lockTaken);
 if (lockTaken)
 {
 // ... critical region of code
 }
 else { /*...*/ }
}
finally
{
 if (lockTaken) Monitor.Exit(someObject);
}

Note that the new System.Threading.SpinLock type also follows this new pattern, and in fact provides only the

reliable overloads:

C#

public struct SpinLock
{
 public void Enter(ref bool lockTaken);
 public void TryEnter(ref bool lockTaken);
 public void TryEnter(TimeSpan timeout, ref bool lockTaken);
 public void TryEnter(int millisecondsTimeout, ref bool lockTaken);
 // ...
}

With these methods, SpinLock is then typically used as follows:

C#

private static SpinLock _lock = new SpinLock(enableThreadOwnerTracking: false);
// ...
bool lockTaken = false;
try
{
 _lock.Enter(ref lockTaken);
 // ... very small critical region here
}

Patterns of Parallel Programming Page 111

finally
{
 if (lockTaken) _lock.Exit(useMemoryBarrier: false);
}

Alternatively, SpinLock may be used with TryEnter as follows:

C#

bool lockTaken = false;
try
{
 _lock.TryEnter(ref lockTaken);
 if (lockTaken)
 {
 // ... very small critical region here
 }
 else { /*...*/ }
}
finally
{
 if (lockTaken) _lock.Exit(useMemoryBarrier:false);
}

The concept of a spin lock is that rather than blocking, it continually iterates through a loop (“spinning”), until the

lock is available. This can lead to benefits in some cases, where contention on the lock is very infrequent, and

where if there is contention, the lock will be available in very short order. This then allows the application to avoid

costly kernel transitions and context switches, instead iterating through a loop a few times. When used at incorrect

times, however, spin locks can lead to significant performance degradation in an application.

The constructor to SpinLock accepts an enableThreadOwnerTracking parameter,

which default to true. This causes the SpinLock to keep track of which thread

currently owns the lock, and can be useful for debugging purposes. This does,

however, have an effect on the lock’s behavior when the lock is misused. SpinLock is

not reentrant, meaning that a thread may only acquire the lock once. If thread

holding the lock tries to enter it again, and if enableThreadOwnerTracking is true,

the call to Enter will throw an exception. If enableThreadOwnerTracking is false,

however, the call will deadlock, spinning forever.

In general, if you need a lock, start with Monitor. Only if after performance testing do you find that Monitor isn’t

fitting the bill should SpinLock be considered. If you do end up using a SpinLock, inside the protected region you

should avoid blocking or calling anything that may block, trying to acquire another lock, calling into unknown code

(including calling virtual methods, interface methods, or delegates), and allocating memory. You should be able to

count the number of instructions executed under a spin lock on two hands, with the total amount of CPU

utilization in the protected region amounting to only tens of cycles.

MIXING EXCEPTIONS WITH LOCKS

As described, a lot of work has gone into ensuring that locks are properly released, even if exceptions occur within

the protected region. This, however, isn’t always the best behavior.

Patterns of Parallel Programming Page 112

Locks are used to make non-atomic sets of actions appear atomic, and that’s often needed due to multiple

statements making discrete changes to shared state. If an exception occurs inside of a critical region, that

exception may leave shared data in an inconsistent state. All of the work we’ve done to ensure reliable lock release

in the face of exceptions now leads to a problem: another thread may acquire the lock and expect state to be

consistent, but find that it’s not.

In these cases, we have a decision to make: is it better to allow threads to access potentially inconsistent state, or

is it better to deadlock (which would be achievable by not releasing the lock, but by “leaking” it instead)? The

answer really depends on the case in question.

If you decide that leaking a lock is the best solution, instead of using the aforementioned patterns the following

may be employed:

C#

Monitor.Enter(someObject);
// ... critical region
Monitor.Exit(someObject);

Now if an exception occurs in the critical region, the lock will not be exited, and any other threads that attempt to

acquire this lock will deadlock. Of course, due to the reentrancy supported by Monitor in the .NET Framework, if

this same thread later attempts to enter the lock, it will succeed in doing so.

AVOIDING DEADLOCKS

Of all of the problems that may result from incorrect synchronization, deadlocks are one of the most well-known.

There are four conditions required for a deadlock to be possible:

1. Mutual exclusion. Only a limited number of threads may utilize a resource concurrently.

2. Hold and wait. A thread holding a resource may request access to other resources and wait until it gets

them.

3. No preemption. Resources are released only voluntarily by the thread holding the resource.

4. Circular wait. There is a set of {T1, …, TN} threads, where T1 is waiting for a resource held by T2, T2 is

waiting for a resource held by T3, and so forth, up through TN waiting for a resource held by T1.

If any one of these conditions doesn’t hold, deadlock isn’t possible. Thus, in order to avoid deadlock, we need to

ensure that we avoid at least one of these. The most common and actionable condition to avoid in real-world code

is #4, circular waits, and we can attack this condition in a variety of ways. One approach involves detecting that a

cycle is about to occur. We can maintain a store of what threads hold what locks, and if a thread makes an attempt

to acquire a lock that would lead to a cycle, we can prevent it from doing so; an example of this graph analysis is

codified in the “.NET Matters: Deadlock Monitor” article at http://msdn.microsoft.com/en-

us/magazine/cc163352.aspx. There is another example in the article “No More Hangs: Advanced Techniques To

Avoid And Detect Deadlocks In .NET Apps” by Joe Duffy at http://msdn.microsoft.com/en-

us/magazine/cc163618.aspx. That same article by Joe Duffy also includes an example of another approach: lock

leveling. In lock leveling, locks are assigned numerical values, and the system tracks the smallest value lock held by

http://msdn.microsoft.com/en-us/magazine/cc163352.aspx
http://msdn.microsoft.com/en-us/magazine/cc163352.aspx
http://msdn.microsoft.com/en-us/magazine/cc163618.aspx
http://msdn.microsoft.com/en-us/magazine/cc163618.aspx

Patterns of Parallel Programming Page 113

a thread, only allowing the thread to acquire locks with smaller values than the smallest value it already holds; this

prevents the potential for a cycle.

In some cases, we can avoid cycles simply by sorting the locks utilized in some consistent way, and ensuring that if

multiple locks need to be taken, they’re taken in sorted order (this is, in effect, a lock leveling scheme). We can see

a simple example of this in an implementation of the classic “dining philosophers” problem.

The dining philosophers problem was posited by Tony Hoare, based on previous examples from Edsger Dijkstra in

the 1960s. The basic idea is that five philosophers sit around a table. Every philosopher has a plate of pasta, and

between every pair of philosophers is a fork. To eat the pasta, a philosopher must pick up and use the forks on

both sides of him; thus, if a philosopher’s neighbor is eating, the philosopher can’t. Philosophers alternate

between thinking and eating, typically for random periods of time.

We can represent each fork as a lock, and a philosopher must acquire both locks in order to eat. This would result

in a solution like the following:

C#

// WARNING: THIS METHOD HAS A BUG
const int NUM_PHILOSOPHERS = 5;
object[] forks = new object[NUM_PHILOSOPHERS];
var philosophers = new Task[NUM_PHILOSOPHERS];
for (int i = 0; i < NUM_PHILOSOPHERS; i++)
{
 int id = i;
 philosophers[i] = Task.Factory.StartNew(() =>
 {

Patterns of Parallel Programming Page 114

 var rand = new Random(id);
 while (true)
 {
 // Think
 Thread.Sleep(rand.Next(100, 1000));

 // Get forks
 object leftFork = forks[id];
 object rightFork = forks[(id + 1) % NUM_PHILOSOPHERS];
 Monitor.Enter(leftFork);
 Monitor.Enter(rightFork);

 // Eat
 Thread.Sleep(rand.Next(100, 1000));

 // Put down forks
 Monitor.Exit(rightFork);
 Monitor.Exit(leftFork);
 }
 }, TaskCreationOptions.LongRunning);
}
Task.WaitAll(philosophers);

Unfortunately, this implementation is problematic. If every philosopher were to pick up his left fork at the same

time, all of the forks would be off the table. Each philosopher would then attempt to pick up the right fork and

would need to wait indefinitely. This is a classic deadlock, following the exact circular wait condition previously

described.

To fix this, we can eliminate the cycle by ensuring that a philosopher first picks up the lower numbered fork and

then the higher numbered fork, even if that means picking up the right fork first:

C#

while (true)
{
 // Think
 Thread.Sleep(rand.Next(100, 1000));

 // Get forks in sorted order to avoid deadlock
 int firstForkId = id, secondForkId = (id + 1) % NUM_PHILOSOPHERS;
 if (secondForkId < firstForkId) Swap(ref firstForkId, ref secondForkId);
 object firstFork = forks[firstForkId];
 object secondFork = forks[secondForkId];
 Monitor.Enter(firstFork);
 Monitor.Enter(secondFork);

 // Eat
 Thread.Sleep(rand.Next(100, 1000));

 // Put down forks
 Monitor.Exit(secondFork);
 Monitor.Exit(firstFork);
}

Another solution is to circumvent the second deadlock requirement, hold and wait, by utilizing the operating

system kernel’s ability to acquire multiple locks atomically. To accomplish that, we need to forego usage of

Patterns of Parallel Programming Page 115

Monitor, and instead utilize one of the .NET Framework synchronization primitives derived from WaitHandle, such

as Mutex. When we want to acquire both forks, we can then utilize WaitHandle.WaitAll to acquire both forks

atomically. Using WaitAll, we block until we’ve acquired both locks, and no other thread will see us holding one

lock but not the other.

C#

const int NUM_PHILOSOPHERS = 5;
Mutex[] forks = Enumerable.Range(0, NUM_PHILOSOPHERS)
 .Select(i => new Mutex())
 .ToArray();
var philosophers = new Task[NUM_PHILOSOPHERS];
for (int i = 0; i < NUM_PHILOSOPHERS; i++)
{
 int id = i;
 philosophers[i] = Task.Factory.StartNew(() =>
 {
 var rand = new Random(id);
 while (true)
 {
 // Think
 Thread.Sleep(rand.Next(100, 1000));

 // Get forks together atomically
 var leftFork = forks[id];
 var rightFork = forks[(id + 1) % NUM_PHILOSOPHERS];
 WaitHandle.WaitAll(new[] { leftFork, rightFork });

 // Eat
 Thread.Sleep(rand.Next(100, 1000));

 // Put down forks; order of release doesn’t matter
 leftFork.ReleaseMutex();
 rightFork.ReleaseMutex();
 }
 }, TaskCreationOptions.LongRunning);
}
Task.WaitAll(philosophers);

The .NET Framework 4 parallel programming samples at http://code.msdn.microsoft.com/ParExtSamples contain

several example implementations of the dining philosophers problem.

ANTI-PATTERNS

LOCK(THIS) AND LOCK(TYPEOF(SOMETYPE))

Especially in code written early in the .NET Framework’s lifetime, it was common to see synchronization done in

instance members with code such as:

C#

void SomeMethod()
{
 lock (this)
 {

http://code.msdn.microsoft.com/ParExtSamples

Patterns of Parallel Programming Page 116

 // ... critical region here
 }
}

It was also common to see synchronization done in static members with code such as:

C#

static void SomeMethod()
{
 lock(typeof(MyType))
 {
 // ... critical region here
 }
}

In general, this pattern should be avoided. Good object-oriented design results in implementation details

remaining private through non-public state, and yet here, the locks used to protect that state are exposed. With

these lock objects then public, it becomes possible for an external entity to accidentally or maliciously interfere

with the internal workings of the implementation, as well as make common multithreading problems such as

deadlocks more likely. (Additionally, Type instances can be domain agile, and a lock on a type in one AppDomain

may seep into another AppDomain, even if the state being protected is isolated within the AppDomain.) Instead

and in general, non-public (and non-AppDomain-agile) objects should be used for locking purposes.

The same guidance applies to MethodImplAttribute. The MethodImplAttribute accepts a MethodImplOptions

enumeration value, one of which is Synchronized. When applied to a method, this ensures that only one thread at

a time may access the attributed member:

C#

[MethodImpl(MethodImplOptions.Synchronized)]
void SomeMethod()
{
 // ... critical region here
}

However, it does so using the equivalent of the explicit locking code shown previously, with a lock on the instance

for instance members and with a lock on the type for static members. As such, this option should be avoided.

READONLY SPINLOCK FIELDS

The readonly keyword informs the compiler that a field should only be updated by the constructor; any attempts

to modify the field from elsewhere results in a compiler error. As such, you might be tempted to write code like

the following:

C#

private readonly SpinLock _lock; // WARNING!

Don’t do this. Due to the nature of structs and how they interact with the readonly keyword, every access to this

_lock field will return a copy of the SpinLock, rather than the original. As a result, every call to _lock.Enter will

succeed in acquiring the lock, even if another thread thinks it owns the lock.

Patterns of Parallel Programming Page 117

For the same reason, don’t pass try to pass SpinLocks around. In most cases, when you do so, you’ll be making a

copy of the SpinLock. As an example, consider the desire to write an extension method for SpinLock that executes

a user-provided delegate while holding the lock:

C#

// WARNING! DON’T DO THIS.
public static void Execute(this SpinLock sl, Action runWhileHoldingLock)
{
 bool lockWasTaken = false;
 try
 {
 sl.Enter(ref lockWasTaken);
 runWhileHoldingLock();
 }
 finally
 {
 if (lockWasTaken) sl.Exit();
 }
}

Theoretically, this code should allow you to write code like:

C#

_lock.Execute(() =>
{
 … // will be run while holding the lock
});

However, the code is very problematic. The SpinLock being targeted by the method will be passed by value, such

that the method will execute on a copy of the SpinLock rather than the original. To write such a method correctly,

you’d need to pass the SpinLock into the Execute method by reference, and C# doesn’t permit an extension

method to target a value passed by reference. Fortunately, Visual Basic does, and we could write this extension

method correctly as follows:

C#

(This extension method cannot be written in C#.)

Visual Basic

<Extension()>
Public Sub Execute(ByRef sl As SpinLock, ByVal runWhileHoldingLock As Action)
 Dim lockWasTaken As Boolean
 Try
 sl.Enter(lockWasTaken)
 runWhileHoldingLock()
 Finally
 If lockWasTaken Then sl.Exit()
 End Try
End Sub

See the blog post at http://blogs.msdn.com/pfxteam/archive/2009/05/07/9592359.aspx for more information

about this dangerous phenomenon.

http://blogs.msdn.com/pfxteam/archive/2009/05/07/9592359.aspx

Patterns of Parallel Programming Page 118

CONCLUSION

Understanding design and coding patterns as they relate to parallelism will help you to find more areas of your

application that may be parallelized and will help you to do so efficiently. Knowing and understanding patterns of

parallelization will also help you to significantly reduce the number of bugs that manifest in your code. Finally,

using the new parallelization support in the .NET Framework 4 which encapsulate these patterns will not only help

to reduce the bug count further, but it should help you to dramatically decrease the amount of time and code it

takes to get up and running quickly and efficiently.

Now, go forth and parallelize.

Enjoy!

ACKNOWLEDGEMENTS

The author would like to thank the following people for their feedback on drafts of this paper: Donny Amalo, John

Bristowe, Tina Burden, David Callahan, Chris Dern, Joe Duffy, Ed Essey, Lisa Feigenbaum, Boby George, Scott

Hanselman, Jerry Higgins, Joe Hoag, Luke Hoban, Mike Liddell, Daniela Cristina Manu, Ade Miller, Pooja Nagpal,

Jason Olson, Emad Omara, Igor Ostrovsky, Josh Phillips, Danny Shih, Cindy Song, Mike Stall, Herb Sutter, Don Syme,

Roy Tan, Ling Wo, and Huseyin Yildiz.

ABOUT THE AUTHOR

Stephen Toub is a Program Manager Lead on the Parallel Computing Platform team at Microsoft, where he spends

his days focusing on the next generation of programming models and runtimes for concurrency. Stephen is also a

Contributing Editor for MSDN® Magazine, for which he writes the .NET Matters column, and is an avid speaker at

conferences such as PDC, TechEd, and DevConnections. Prior to working on the Parallel Computing Platform,

Stephen designed and built enterprise applications for companies such as GE, JetBlue, and BankOne. Stephen

holds degrees in computer science from Harvard University and New York University.

This material is provided for informational purposes only. Microsoft makes no warranties, express or implied.

©2010 Microsoft Corporation.

